留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤炭输运装备用ZTAp-Fe材料腐蚀机理研究

范磊 范兴帅 张先丞 胡纯 任清海

范磊, 范兴帅, 张先丞, 胡纯, 任清海. 煤炭输运装备用ZTAp-Fe材料腐蚀机理研究[J]. 矿业科学学报, 2022, 7(2): 233-239. doi: 10.19606/j.cnki.jmst.2022.02.011
引用本文: 范磊, 范兴帅, 张先丞, 胡纯, 任清海. 煤炭输运装备用ZTAp-Fe材料腐蚀机理研究[J]. 矿业科学学报, 2022, 7(2): 233-239. doi: 10.19606/j.cnki.jmst.2022.02.011
Fan Lei, Fan Xingshuai, Zhang Xiancheng, Hu Chun, Ren Qinghai. Corrosion mechanism of ZTAp-Fe material used in coal transportation equipment[J]. Journal of Mining Science and Technology, 2022, 7(2): 233-239. doi: 10.19606/j.cnki.jmst.2022.02.011
Citation: Fan Lei, Fan Xingshuai, Zhang Xiancheng, Hu Chun, Ren Qinghai. Corrosion mechanism of ZTAp-Fe material used in coal transportation equipment[J]. Journal of Mining Science and Technology, 2022, 7(2): 233-239. doi: 10.19606/j.cnki.jmst.2022.02.011

煤炭输运装备用ZTAp-Fe材料腐蚀机理研究

doi: 10.19606/j.cnki.jmst.2022.02.011
基金项目: 

清华大学摩擦学国家重点实验室开放基金 SKLTKF20B11

中央高校基本科研业务费专项资金 2021YQJD21

中央高校基本科研业务费专项资金 2020YQJD16

国家大学生创新训练项目 202011413028

详细信息
    作者简介:

    范磊(1985—),男,河北邢台人,博士,高级工程师,主要从事摩擦学理论及先进耐磨材料方面的研究工作。Tel:13811880964,E-mail:flcumtb@163.com

  • 中图分类号: TB37

Corrosion mechanism of ZTAp-Fe material used in coal transportation equipment

  • 摘要: 井下环境差,由传统钢铁材料制造的井下煤炭输运装备的使用寿命较低。本文通过电化学试验、扫描电镜观察、能谱分析等方法,探究了粉末冶金法制备增强铁基复合材料(ZTAp-Fe)的耐腐蚀性能、微观组织结构以及元素分布之间的规律,揭示了ZTAp-Fe材料的耐腐蚀机理。结果表明,ZTAp-Fe材料中ZTAp与铁基体结合状态良好,界面为非冶金结合。铁基合金中引入20 % ZTAp,腐蚀速率由0.909 28 mm/a降至0.365 14 mm/a,电荷转移电阻(Rct)由775.6 Ω·cm2提高到1 025.3 Ω·cm2。ZTAp的耐蚀性优于铁基体,界面处形成腐蚀产物有效抑制腐蚀介质对ZTAp和铁基体的进一步腐蚀。ZTAp增强铁基复合材料能够有效地提高煤炭输运装备的使用寿命。
  • 图  1  原材料形貌

    Figure  1.  Raw material morphology

    图  2  ZTAp-Fe复合材料制备流程

    Figure  2.  Preparation process of ZTAp reinforced iron matrix composite

    图  3  ZTAp-Fe材料的显微组织

    Figure  3.  Microstructure of ZTAp reinforced iron matrix composite

    图  4  ZTAp-Fe材料的EDS线扫描结果

    Figure  4.  Result of EDS line scan of ZTAp reinforced iron matrix composite

    图  5  动态极化曲线

    Figure  5.  Dynamic polarization curves

    图  6  Fe45基体和体积分数为20 % ZTAp增强铁基复合材料的阻抗谱和等效电路

    Rs—溶液电阻;Rct—电荷转移电阻; CPE—界面电容相关的常相位角元件

    Figure  6.  Impedance spectra and equivalent circuit of Fe45 matrix and Fe matrix composite reinforced with 20 % ZTAp

    图  7  界面腐蚀形貌表面扫描

    Figure  7.  Surface scanning of interfacial corrosion morphology

    图  8  ZTAp-Fe材料EDS面扫描分析

    Figure  8.  Surface scan analysis of ZTAp-Fe composite

    表  1  铁基自熔合金的化学成分

    Table  1.   Chemical composition of iron-based self-fluxing alloys

    成分 Fe C Cr Ni Si B
    质量分数/% 79.2 0.098 15.5 0.065 0.57 1.33
    下载: 导出CSV

    表  2  铁基合金和ZTAp-Fe材料表面的阻抗拟合结果

    Table  2.   The impedance fitting results of the iron-based alloy and ZTAp reinforced composite surface

    样品 Rs/
    (Ω·cm2)
    CPE Rct/
    (Ω·cm2)
    Y0 /
    (sn·Ω-1·cm-1)
    n
    铁基合金 1.6 2.87×10-5 0.797 7 775.6
    ZTAp增强
    复合材料
    1.8 1.09×10-5 0.896 5 1 025.3
    下载: 导出CSV

    表  3  EDS表面扫描分析各元素含量

    Table  3.   EDS surface scan analysis of the content of each elemen

    元素 质量分数/% 原子百分比/%
    O 20.39 42.00
    Al 22.20 27.11
    Cr 8.42 5.34
    Fe 34.31 20.24
    Zr 14.68 5.31
    总量 100.00
    下载: 导出CSV
  • [1] 方宇生. 1000kW刮板机减速器箱体设计优化研究[D]. 徐州: 中国矿业大学, 2020.
    [2] Li J F, Zhu Z C, Peng Y X, et al. Microstructure and wear characteristics of novel Fe-Ni matrix wear-resistant composites on the middle chute of the scraper conveyor[J]. Journal of Materials Research and Technology, 2020, 9(1): 935-947. doi: 10.1016/j.jmrt.2019.11.033
    [3] Li J X, Liang S W. Friction and wear of the middle trough in scraper conveyors[J]. Industrial Lubrication and Tribology, 2018, 70(6): 1072-1077. doi: 10.1108/ILT-08-2017-0231
    [4] Shi Z Y, Zhu Z C. Case study: Wear analysis of the middle plate of a heavy-load scraper conveyor chute under a range of operating conditions[J]. Wear, 2017, 380/381: 36-41. doi: 10.1016/j.wear.2017.03.005
    [5] 汪健. 刮板输送机用中锰钢的摩擦腐蚀行为研究[D]. 徐州: 中国矿业大学, 2018.
    [6] 潘俊艳, 陈华辉, 马峰, 等. 低合金钢在高矿化度矿井水环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201603010.htm

    Pan Junyan, Chen Huahui, Ma Feng, et al. Corrosion behavior of low alloy steels in high-mineralized mine water[J]. Journal of Chinese Society for Corrosion and Protection, 2016, 36(3): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201603010.htm
    [7] 麻衡, 徐凯, 孙乾. 我国煤机液压支架用高强钢的生产现状与发展趋势[J]. 轧钢, 2020, 37(6): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGG202006018.htm

    Ma Heng, Xu Kai, Sun Qian. Production status and development trend of high strength steel for coal machine hydraulic support in China[J]. Steel Rolling, 2020, 37(6): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGG202006018.htm
    [8] 葛世荣, 王军祥, 王庆良, 等. 刮板输送机中锰钢中部槽的自强化抗磨机理及应用[J]. 煤炭学报, 2016, 41 (9): 2373-2379. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609032.htm

    Ge Shirong, Wang Junxiang, Wang Qingliang, et al. Self-strengthening wear resistant mechanism and application of medium manganese steel applied for the chute of scraper conveyor[J]. Journal of China Coal Society, 2016, 41 (9): 2373-2379. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609032.htm
    [9] 柴金荣, 叶磊, 范兴帅, 等. 刮板输送机中板磨损性能的研究进展[J]. 中国煤炭, 2018, 44(12): 75-77, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201812022.htm

    Chai Jinrong, Ye Lei, Fan Xingshuai, et al. Research progress on the wear property of middle plate of scraper conveyor middle trough[J]. China Coal, 2018, 44(12): 75-77, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201812022.htm
    [10] 黄晓冬, 宋延沛. 原位反应铸造法制备颗粒增强铁基复合材料的研究现状[J]. 铸造技术, 2017, 38(5): 990-995. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201705003.htm

    Huang Xiaodong, Song Yanpei. Research status of Fe matrix composites with particle reinforcement by in situ reaction casting[J]. Foundry Technology, 2017, 38(5): 990-995. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201705003.htm
    [11] 庄伟彬, 韩明明, 刘敬福, 等. 陶瓷颗粒增强铁基复合材料的研究进展[J]. 热加工工艺, 2018, 47(4): 40-42, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201804009.htm

    Zhuang Weibin, Han Mingming, Liu Jingfu, et al. Research progress of ceramic particle reinforced iron matrix composite[J]. Hot Working Technology, 2018, 47(4): 40-42, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201804009.htm
    [12] 曹新建, 金剑锋, 曹敬袆, 等. 不同类型颗粒混合增强铁基复合材料的磨损性能[J]. 材料工程, 2017, 45(8): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201708011.htm

    Cao Xinjian, Jin Jianfeng, Cao Jingyi, et al. Wear resistance of iron matrix composites reinforced by mixed-type particles[J]. Journal of Materials Engineering, 2017, 45(8): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201708011.htm
    [13] 张婉婷, 王悦, 陈华辉. ZTAp/Fe45复合材料冲击性能的数值模拟与实验验证[J]. 矿业科学学报, 2018, 3(4): 386-391. http://kykxxb.cumtb.edu.cn/article/id/163

    Zhang Wanting, Wang Yue, Chen Huahui. Numerical simulation and experimental validation of the impact properties of ZTAp/Fe45 composite[J]. Journal of Mining Science and Technology, 2018, 3(4): 386-391. http://kykxxb.cumtb.edu.cn/article/id/163
    [14] 王悦, 付道仁, 信振洋, 等. ZTAp/Fe45复合材料的强韧性研究[J]. 矿业科学学报, 2020, 5(5): 556-563. doi: 10.19606/j.cnki.jmst.2020.05.010

    Wang Yue, Fu Daoren, Xin Zhenyang, et al. Research on the strength and toughness of ZTAp/Fe45 composites[J]. Journal of Mining Science and Technology, 2020, 5(5): 556-563. doi: 10.19606/j.cnki.jmst.2020.05.010
    [15] 信振洋, 王悦, 苗文成, 等. 颗粒增强金属基复合材料参数化建模研究[J]. 矿业科学学报, 2020, 5(1): 86-95. http://kykxxb.cumtb.edu.cn/article/id/268

    Xin Zhenyang, Wang Yue, Miao Wencheng, et al. Parametric modeling of particle reinforced metal matrix composites[J]. Journal of Mining Science and Technology, 2020, 5(1): 86-95. http://kykxxb.cumtb.edu.cn/article/id/268
    [16] 曹保卫, 柏帆. 液相烧结TiC-Al2O3颗粒共增强铁基复合材料的制备[J]. 铸造技术, 2017, 38(8): 1834-1836. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201708015.htm

    Cao Baowei, Bai Fan. Preparation of TiC-Al2O3 particles reinforced iron-matrix composites by liquid phase sintering[J]. Foundry Technology, 2017, 38(8): 1834-1836. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201708015.htm
    [17] 周谟金, 蒋业华, 卢德宏, 等. B4C包覆ZTA颗粒增强铁基复合材料制备与性能[J]. 材料导报, 2018, 32(24): 4324-4328. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201824021.htm

    Zhou Mojin, Jiang Yehua, Lu Dehong, et al. Preparation and properties of the ZTA particles cover with B4C powder reinforced iron matrix composites[J]. Materials Review, 2018, 32(24): 4324-4328. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201824021.htm
    [18] 王娟, 郑开宏. ZTA颗粒增强铁基复合材料的高温磨料磨损性能研究[J]. 热加工工艺, 2018, 47(10): 101-105, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201810030.htm

    Wang Juan, Zheng Kaihong. Study on high temperature abrasive wear properties of ZTA particle reinforced iron matrix composites[J]. Hot Working Technology, 2018, 47(10): 101-105, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201810030.htm
    [19] Bai H Q, Zhong L S, Kang L, et al. A novel iron matrix composite fabricated by two-step in situ reaction: Microstructure, formation mechanism and mechanical properties[J]. Journal of Alloys and Compounds, 2021, 855: 157442.
    [20] Cho S, Lee Y H, Ko S, et al. Enhanced high-temperature compressive strength of TiC reinforced stainless steel matrix composites fabricated by liquid pressing infiltration process[J]. Journal of Alloys and Compounds, 2020, 817: 152714.
    [21] García C, Martín F, Herranz G, et al. Effect of adding carbides on dry sliding wear behaviour of steel matrix composites processed by metal injection moulding[J]. Wear, 2018, 414/415: 182-193.
    [22] 刘侃, 徐方伟, 涂小慧, 等. ZTA颗粒增强高铬铸铁基复合材料界面研究[J]. 铸造, 2018, 67(5): 398-403. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZZZ201805006.htm

    Liu Kan, Xu Fangwei, Tu Xiaohui, et al. Interfacial bonding behavior of high chromium cast iron composites reinforced with ZTA ceramic particles[J]. Foundry, 2018, 67(5): 398-403. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZZZ201805006.htm
    [23] Hirschorn B, Orazem M E, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters[J]. Electrochimica Acta, 2010, 55(21): 6218-6227.
    [24] 季辰辰, 米红宇, 杨生春. 超级电容器在器件设计以及材料合成的研究进展[J]. 科学通报, 2019, 64(1): 9-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201901005.htm

    Ji Chenchen, Mi Hongyu, Yang Shengchun. Latest advances in supercapacitors: From new electrode materials to novel device designs[J]. Chinese Science Bulletin, 2019, 64(1): 9-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201901005.htm
    [25] 杜楠, 叶超, 田文明, 等. 304不锈钢点蚀行为的电化学阻抗谱研究[J]. 材料工程, 2014, 42(6): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201406014.htm

    Du Nan, Ye Chao, Tian Wenming, et al. 304 stainless steel pitting behavior by means of electrochemical impedance spectroscopy[J]. Journal of Materials Engineering, 2014, 42(6): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201406014.htm
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  124
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-28
  • 修回日期:  2021-08-25
  • 刊出日期:  2022-04-20

目录

    /

    返回文章
    返回