留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶结充填采场顶板承载特性及煤柱稳定性分析

徐斌 李永亮 路彬 李进

徐斌, 李永亮, 路彬, 李进. 胶结充填采场顶板承载特性及煤柱稳定性分析[J]. 矿业科学学报, 2022, 7(2): 200-209. doi: 10.19606/j.cnki.jmst.2022.02.007
引用本文: 徐斌, 李永亮, 路彬, 李进. 胶结充填采场顶板承载特性及煤柱稳定性分析[J]. 矿业科学学报, 2022, 7(2): 200-209. doi: 10.19606/j.cnki.jmst.2022.02.007
Xu Bin, Li Yongliang, Lu Bin, Li Jin. Analysis of roof bearing characteristics and coal pillar stability of cemented backfill field[J]. Journal of Mining Science and Technology, 2022, 7(2): 200-209. doi: 10.19606/j.cnki.jmst.2022.02.007
Citation: Xu Bin, Li Yongliang, Lu Bin, Li Jin. Analysis of roof bearing characteristics and coal pillar stability of cemented backfill field[J]. Journal of Mining Science and Technology, 2022, 7(2): 200-209. doi: 10.19606/j.cnki.jmst.2022.02.007

胶结充填采场顶板承载特性及煤柱稳定性分析

doi: 10.19606/j.cnki.jmst.2022.02.007
基金项目: 

国家自然科学基金 51804310

详细信息
    作者简介:

    徐斌(1993—),男,山东潍坊人,博士研究生,主要从事矿山建设与压力控制方面的研究工作。Tel:18800121539,E-mail:xu_bin_1993@163.com

  • 中图分类号: TD325

Analysis of roof bearing characteristics and coal pillar stability of cemented backfill field

  • 摘要: 为研究连采连充式胶结充填采场顶板承载特性及煤柱稳定性,基于FLAC3D建立数值模型,分析了顶板交替承载特性,研究了顶板主次承载结构的转换规律,揭示了煤柱应力释放及变形规律。基于煤柱两侧约束条件的差异性,建立了煤柱应力分布的力学模型,得到了应力集中系数、临时支护强度、埋深等因素对煤柱极限承载宽度的影响规律。通过煤柱与充填体协同承载的数值模拟,揭示了充填体宽度对煤柱承载特性的影响规律。结果表明:采场顶板承载结构随工作面推进而变换,且在煤柱与充填体协同承载阶段,煤柱为主要承载结构,随煤柱的逐步采出,充填体逐步过渡为主要承载结构;煤柱应力平衡区宽度与临时支护强度呈反比,且与工作面埋深和应力集中系数呈正比,提高临时支护强度,能显著降低临空面破碎区范围,减小极限平衡宽度;增加充填体宽度可保障煤柱稳定。在昊源煤矿中,通过提高充填体强度与充填率,提高充填体对煤柱的约束效应,有效保障了煤柱稳定性,为类似条件下煤柱变形控制提供参考。
  • 图  1  连采连充式充填工序

    Figure  1.  Filling process of continuous mining and filling

    图  2  煤帮两侧收敛及支护变形

    Figure  2.  Convergence and support deformation on both sides of coal bank

    图  3  采场围岩应力分布及应力释放规律

    Figure  3.  The stress distribution and stress release law of the surrounding rock of the stope

    图  4  采场围岩应力平衡拱扩展规律

    Figure  4.  Expansion law of stress balance arch of the surrounding rock of stope

    图  5  各阶段煤柱水平变形特性

    Figure  5.  Horizontal deformation characteristics of coal pillars at various stages

    图  6  煤柱两侧应力分布

    Figure  6.  Stress distribution on both sides of coal pillar

    图  7  煤柱承载结构力学模型

    k-应力集中系数;γ-上覆岩层容重;H-开采深度;px-临时支护强度;
    σx-模型水平应力;τxy-煤柱于顶底板之间的剪应力;
    le-极限平衡宽度;lp-弹性变形宽度

    Figure  7.  Mechanical model of coal pillar bearing structure

    图  8  应力集中系数对极限平衡区扩展影响

    Figure  8.  Influence of stress concentration factor on the expansion of limit equilibrium zone

    图  9  临时支护强度对极限平衡宽度的影响

    Figure  9.  Influence of Temporary Support Strength on Ultimate Equilibrium Width

    图  10  埋深对极限平衡宽度的影响

    Figure  10.  The effect of buried depth on the limit equilibrium width

    图  11  煤柱与充填体组合结构的数值分析模型

    Figure  11.  Numerical analysis model of combined structure of coal pillar and backfill

    图  12  充填体宽度对煤柱变形的影响

    Figure  12.  The influence of filling body width on coal pillar deformation distribution

    图  13  充填体宽度对煤柱应力分布的影响

    Figure  13.  The influence of filling body width on coal pillar stress distribution

    图  14  二阶段回采煤柱稳定状态

    Figure  14.  Stable state of coal pillars in the second stage

    表  1  地质力学参数

    Table  1.   Geomechanical parameters

    分层厚度/ m 密度/ (kg·m-3) 体积模量/ GPa 剪切模量/ GPa 内摩擦角/ (°) 黏聚力/ MPa 抗拉强度/ MPa
    表层覆岩 24 2 615 1.87 1.12 30 2.00 0.90
    砂质泥岩 5 2 450 1.09 1.60 18 3.80 4.70
    粉砂岩 5 2 615 1.87 1.12 30 2.00 0.90
    砂质泥岩 17 2 450 1.09 1.60 18 3.80 4.70
    泥岩 3 2 370 2.10 1.41 25 3.80 3.70
    砂质泥岩 2 2 450 1.09 1.60 18 3.80 4.70
    泥岩 3 2 370 2.10 1.41 25 3.80 3.70
    砂质泥岩 6 2 450 1.09 1.60 18 3.80 4.70
    16号煤 5 1 400 1.69 0.56 40 2.80 2.50
    充填体 5 1 700 0.97 0.39 12 0.50 0.80
    砂质泥岩 3 2 450 1.09 1.60 18 3.80 4.70
    17号煤 1.5 1 400 1.69 0.56 40 2.80 2.50
    砂质泥岩 35.5 2 450 1.09 1.60 18 3.80 4.70
    下载: 导出CSV
  • [1] 钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018, 43(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801002.htm

    Qian Minggao, Xu Jialin, Wang Jiachen. Further on the sustain-able mining of coal[J]. Journal of China Coal Society, 2018, 43(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801002.htm
    [2] 谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43(5): 1187-1197. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201805001.htm

    Xie Heping, Wang Jinhua, Wang Guofa, et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society, 2018, 43(5): 1187-1197. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201805001.htm
    [3] Zhang J X, Li B Y, Zhou N, et al. Application of solid backfilling to reduce hard-roof caving and longwall coal face burst potential[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 197-205. doi: 10.1016/j.ijrmms.2016.07.025
    [4] Xie H P, Ju Y, Gao F, et al. Groundbreaking theoretical and technical conceptualization of fluidized mining of deep underground solid mineral resources[J]. Tunnelling and Underground Space Technology, 2017, 67: 68-70. doi: 10.1016/j.tust.2017.04.021
    [5] 蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略[J]. 工程科学学报, 2019, 41(4): 417-426. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201904001.htm

    Cai Meifeng, Xue Dinglong, Ren Fenhua. Current status and development strategy of metal mines[J]. Chinese Journal of Engineering, 2019, 41(4): 417-426. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201904001.htm
    [6] 冯国瑞, 杜献杰, 郭育霞, 等. 结构充填开采基础理论与地下空间利用构想[J]. 煤炭学报, 2019, 44(1): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901008.htm

    Feng Guorui, Du Xianjie, Guo Yuxia, et al. Basic theory of constructional backfill mining and the underground space utilization concept[J]. Journal of China Coal Society, 2019, 44(1): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901008.htm
    [7] Li M, Zhang J X, Zhou N, et al. Effect of particle size on the energy evolution of crushed waste rock in coal mines[J]. Rock Mechanics and Rock Engineering, 2017, 50(5): 1347-1354. doi: 10.1007/s00603-016-1151-5
    [8] 张东升, 刘洪林, 范钢伟, 等. 新疆大型煤炭基地科学采矿的内涵与展望[J]. 采矿与安全工程学报, 2015, 32(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201501001.htm

    Zhang Dongsheng, Liu Honglin, Fan Gangwei, et al. Connotation and prospection on scientific mining of large Xinjiang coal base[J]. Journal of Mining & Safety Engineering, 2015, 32(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201501001.htm
    [9] Cao Z Z, Xu P, Li Z H, et al. Joint bearing mechanism of coal pillar and backfilling body in roadway backfilling mining technology[J]. Computers Materials & Continua, 2018, 54(2): 137-159. http://doc.paperpass.com/journal/20180067jsjclhlxtyw.html
    [10] Emad M Z, Mitri H, Kelly C. State-of-the-art review of backfill practices for sublevel stoping system[J]. International Journal of Mining, Reclamation and Environment, 2015, 29(6): 544-556. doi: 10.1080/17480930.2014.889363
    [11] Al Heib M M, Didier C, Masrouri F. Improving short-and long-term stability of underground gypsum mine using partial and total backfill[J]. Rock Mechanics and Rock Engineering, 2010, 43(4): 447-461. doi: 10.1007/s00603-009-0066-9
    [12] Kostecki T, Spearing A J S. Influence of backfill on coal pillar strength and floor bearing capacity in weak floor conditions in the Illinois Basin[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76: 55-67. doi: 10.1016/j.ijrmms.2014.11.011
    [13] 王方田, 屠世浩. 浅埋房式采空区下近距离煤层长壁开采致灾机制及防控技术[M]. 徐州: 中国矿业大学出版社, 2015.
    [14] 宋卫东, 朱鹏瑞, 戚伟, 等. 三轴作用下岩柱-充填体试件耦合作用机理研究[J]. 采矿与安全工程学报, 2017, 34(3): 573-579. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201703024.htm

    Song Weidong, Zhu Pengrui, Qi Wei, et al. Coupling mechanism of rock-backfill system under triaxial compression[J]. Journal of Mining & Safety Engineering, 2017, 34(3): 573-579. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201703024.htm
    [15] 宋卫东, 任海锋, 曹帅. 侧限压缩条件下充填体与岩柱相互作用机理[J]. 中国矿业大学学报, 2016, 45(1): 49-55, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201601008.htm

    Song Weidong, Ren Haifeng, Cao Shuai. Interaction mechanism between backfill and rock pillar under confined compression condition[J]. Journal of China University of Mining & Technology, 2016, 45(1): 49-55, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201601008.htm
    [16] Liu X S, Tan Y L, Ning J G, et al. Mechanical properties and damage constitutive model of coal in coal-rock combined body[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 140-150. doi: 10.1016/j.ijrmms.2018.07.020
    [17] 尹大伟, 陈绍杰, 陈兵, 等. 煤样贯穿节理对岩-煤组合体强度及破坏特征影响模拟研究[J]. 采矿与安全工程学报, 2018, 35(5): 1054-1062. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201805024.htm

    Yin Dawei, Chen Shaojie, Chen Bing, et al. Simulation study on effects of coal persistent joint on strength and failure characteristics of rock-coal combined body[J]. Journal of Mining & Safety Engineering, 2018, 35(5): 1054-1062. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201805024.htm
    [18] Zhao T B, Guo W Y, Lu C P, et al. Failure characteristics of combined coal-rock with different interfacial angles[J]. Geomechanics and Engineering, 2016, 11(3): 345-359. doi: 10.12989/gae.2016.11.3.345
    [19] 郭东明, 左建平, 张毅, 等. 不同倾角组合煤岩体的强度与破坏机制研究[J]. 岩土力学, 2011, 32(5): 1333-1339. doi: 10.3969/j.issn.1000-7598.2011.05.009

    Guo Dongming, Zuo Jianping, Zhang Yi, et al. Research on strength and failure mechanism of deep coal-rock combination bodies of different inclined angles[J]. Rock and Soil Mechanics, 2011, 32(5): 1333-1339. doi: 10.3969/j.issn.1000-7598.2011.05.009
    [20] 唐岳松, 张令非, 吕华永. 煤基固废制备充填材料配比优化试验研究[J]. 矿业科学学报, 2019, 4(4): 327-336. http://kykxxb.cumtb.edu.cn/article/id/230

    Tang Y S, Zhang L F, Lü H Y. Study on proportion optimization of coal-based solid wastes filling materials. Journal of Mining Science and Technology, 2019, 4(4): 327-336. http://kykxxb.cumtb.edu.cn/article/id/230
    [21] 陈磊, 郑志阳, 许向前, 等. 充填体强度形成速率与工作面推进速度的关系[J]. 矿业科学学报, 2018, 3(2): 156-164. http://kykxxb.cumtb.edu.cn/article/id/133

    Chen L, Zheng Z Y, Xu X Q, et al. Relationship between the strength formation rate of the filling body and the advancing speed of the working face. Journal of Mining Science and Technology, 2018, 3(2): 156-164. http://kykxxb.cumtb.edu.cn/article/id/133
    [22] 路彬, 张新国, 李飞, 等. 短壁矸石胶结充填开采技术与应用[J]. 煤炭学报, 2017, 42(S1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S1002.htm

    Lu Bin, Zhang Xinguo, Li Fei, et al. Study and application of short-wall gangue cemented backfilling technology[J]. Journal of China Coal Society, 2017, 42(S1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S1002.htm
    [23] Lu B, Li Y L, Fang S Z, et al. Cemented backfilling mining technology for gently inclined coal seams using a continuous mining and continuous backfilling method[J]. Shock and Vibration, 2021, (2): 1-12. http://www.researchgate.net/publication/349370552_Cemented_Backfilling_Mining_Technology_for_Gently_Inclined_Coal_Seams_Using_a_Continuous_Mining_and_Continuous_Backfilling_Method
    [24] 侯朝炯, 马念杰. 煤层巷道两帮煤体应力和极限平衡区的探讨[J]. 煤炭学报, 1989, 14(4): 21-29. doi: 10.3321/j.issn:0253-9993.1989.04.001

    Hou Chaojiong, Ma Nianjie. Stress in in-seam roadway sides and limit equilibrium zone[J]. Journl of China Coal Society, 1989, 14(4): 21-29. doi: 10.3321/j.issn:0253-9993.1989.04.001
    [25] 朱晓峻. 带状充填开采岩层移动机理研究[D]. 徐州: 中国矿业大学, 2016.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  225
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-06-07
  • 刊出日期:  2022-04-20

目录

    /

    返回文章
    返回