留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融循环下排土场散体物料力学特性及其稳定性分析

徐文彬 王家臣 栾茂旭

徐文彬, 王家臣, 栾茂旭. 冻融循环下排土场散体物料力学特性及其稳定性分析[J]. 矿业科学学报, 2022, 7(2): 154-165. doi: 10.19606/j.cnki.jmst.2022.02.002
引用本文: 徐文彬, 王家臣, 栾茂旭. 冻融循环下排土场散体物料力学特性及其稳定性分析[J]. 矿业科学学报, 2022, 7(2): 154-165. doi: 10.19606/j.cnki.jmst.2022.02.002
Xu Wenbin, Wang Jiachen, Luan Maoxu. The effect of freezing and thawing cycles on the mechanical properties and slope stability of the waste dump[J]. Journal of Mining Science and Technology, 2022, 7(2): 154-165. doi: 10.19606/j.cnki.jmst.2022.02.002
Citation: Xu Wenbin, Wang Jiachen, Luan Maoxu. The effect of freezing and thawing cycles on the mechanical properties and slope stability of the waste dump[J]. Journal of Mining Science and Technology, 2022, 7(2): 154-165. doi: 10.19606/j.cnki.jmst.2022.02.002

冻融循环下排土场散体物料力学特性及其稳定性分析

doi: 10.19606/j.cnki.jmst.2022.02.002
基金项目: 

国家重点研发计划 2018YFC0808403

详细信息
    作者简介:

    徐文彬(1985—),男,江西上饶人,博士,副教授,博士生导师,主要从事矿山压力与岩层控制及排土场边坡方面的研究工作。Tel:18612987658,E-mail:xuwb08@163.com

    通讯作者:

    王家臣(1963—),男,黑龙江方正人,博士,教授,博士生导师,主要从事厚煤层开采、矿山压力与岩层控制及露天矿边坡方面的研究工作。E-mail:wangjiachen@vip.sina.com

  • 中图分类号: TD353

The effect of freezing and thawing cycles on the mechanical properties and slope stability of the waste dump

  • 摘要: 为了解冻融循环引起的排土场散体物料剪切强度劣化规律,采用自主研发的大型直剪仪开展冻融循环作用下土石混合体的剪切试验,得到不同冻融循环次数下的排土场土石混合体剪切强度劣化曲线,并通过CT扫描分析不同冻融循环次数下土石混合体内部细观结构演化特征;最后,开展考虑冻融循环影响的排土场边坡稳定性分析。研究结果表明,在低法向压力下,散体物料的剪切应力-位移曲线主要呈现应变软化型,且在剪切过程中伴随剪胀行为;随着法向压力增大,曲线逐渐向应变硬化型转变,剪切过程中主要呈现剪切压缩行为;冻融循环次数增加,会使曲线应变硬化行为明显,逐渐弱化剪胀行为,内聚力和内摩擦角逐渐减小。当冻融循环次数达到15次时,内聚力和内摩擦角的减小量分别为18.45 % 和9.42 %;冻融循环导致散体物料内部细颗粒冻胀挤压碎裂,致使细颗粒和孔隙间发生错位与重组;冻融循环引起的散体物料孔隙变化主要集中在前5次;当冻融循环次数达到15次时,排土场安全系数减小率约为7.6 %。研究结果可为寒区排土场稳定性分析提供参考。
  • 图  1  排土场现场取样图

    Figure  1.  Site sampling drawing of waste dump

    图  2  排土场散体物料粒径分布

    Figure  2.  Particle size distribution of bulk materials in waste dump

    图  3  大型直剪仪与构件

    Figure  3.  Large direct shear apparatus and its components

    图  4  CT扫描仪与重构图像

    Figure  4.  CT scanner and reconstructed image

    图  5  不同冻融循环次数下散体物料的剪切力-剪切位移曲线

    Figure  5.  Shear stress-shear displacement curve of bulk materials under different freeze-thaw cycles

    图  6  不同冻融循环次数下散体物料的垂直位移-剪切位移曲线

    Figure  6.  Vertical displacement-shear displacement curve of bulk materials under different freeze-thaw cycles

    图  7  不同冻融循环次数散体物料的剪胀角-剪切位移曲线

    Figure  7.  Shear expansion angle-hear displacement curves of bulk materials under different freeze-thaw cycles

    图  8  散体物料峰值强度与冻融循环次数关系

    Figure  8.  Peak strength of bulk materials under different freeze-thaw cycles

    图  9  内聚力、内摩擦角与冻融循环次数的关系

    Figure  9.  Relationship between cohesion, internal friction angle and freeze-thaw cycle times

    图  10  内聚力、内摩擦角损伤系数与冻融循环次数关系

    Figure  10.  Relationship between cohesion, internal friction angle damage coefficient and freeze-thaw cycle times

    图  11  散体物料的三维重构图及三维横切面位置

    Figure  11.  Three dimensional reconstruction drawing and three-dimensional cross-section position of bulk material

    图  12  不同循环次数后试样不同位置的孔隙率分布曲线

    Figure  12.  Porosity distribution curves at different positions of samples after different cycles

    图  13  分析模型典型剖面

    Figure  13.  Typical section of analytical model

    图  14  冻融循环后角岩排土场不同排土时期安全系数

    Figure  14.  The safety factor of different dumping periods of breccia waste dump after freeze-thaw cycle

    表  1  试样不同位置横切面的CT重构图

    Table  1.   CT reconstruction of cross sections at different positions of the sample

    冻融次数 试样1/5位置 试样2/5位置 试样3/5位置 试样4/5位置
    0次
    5次
    10次
    下载: 导出CSV

    表  2  试样不同位置横切面的CT重构孔隙网络图

    Table  2.   CT reconstruction pore network diagram of cross sections at different positions of samples

    冻融次数 试样1/5位置 试样2/5位置 试样3/5位置 试样4/5位置
    0次
    5次
    10次
    下载: 导出CSV
  • [1] 王谦, 钟秀梅, 高中南, 等. 冻融作用下兰州饱和黄土的液化特性研究[J]. 岩石力学与工程学报, 2020, 39(S1): 2986-2994. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1039.htm

    Wang Qian, Zhong Xiumei, Gao Zhongnan, et al. Study on the liquefaction characteristics of Lanzhou saturated loess under freeze-thaw action[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2986-2994. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1039.htm
    [2] Zhou Zhong, Liu Zhuangzhuang, Yang Hao, et al. Freeze-thaw damage mechanism of elastic modulus of soil-rock mixture under different confining pressures[J]. Journal of Central South University, 2020, 27(2): 554-565. doi: 10.1007/s11771-020-4316-z
    [3] 王家臣, 李阳春, 徐文彬, 等. 软-陡基底排土场边坡破坏模式与机理[J]. 矿业科学学报, 2021, 6(2): 130-138. doi: 10.19606/j.cnki.jmst.2021.02.001

    Wang Jiachen, Li Yangchun, Xu Wenbin, et al. Failure mode and mechanism of mine waste dump with a soft and steep layer base[J]. Journal of Mining Science and Technology, 2021, 6 (2): 130-138. doi: 10.19606/j.cnki.jmst.2021.02.001
    [4] 罗怀廷. 露天矿土质边坡冻融强度测试及稳定性研究[J]. 煤炭科学技术, 2017, 45(S1): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2017S1006.htm

    Luo Huaiting. Strength testing and stability research on soil slope with freezing and thawing in surface mine[J]. Coal Science and Technology, 2017, 45 (S1): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2017S1006.htm
    [5] 卜建清, 王天亮. 冻融及细粒含量对粗粒土力学性质影响的试验研究[J]. 岩土工程学报, 2015, 37(4): 608-614. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504006.htm

    Bu Jianqing, Wang Tianliang. Experimental study on the influence of freeze-thaw and fine particle content on the mechanical properties of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 608-614. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504006.htm
    [6] 陈涛, 保其长, 王伟, 等. 冻融循环下堆石料变形特性与抗剪强度试验研究[J]. 水力发电学报, 2019, 38(3): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201903016.htm

    Chen Tao, Bao Qichang, Wang Wei, et al. Experimental study on deformation characteristics and shear strength of rockfill under freeze-thaw cycles[J]. Journal of Hydroelectric Engineering, 2019, 38(3): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201903016.htm
    [7] 张莎莎, 杨晓华. 粗粒盐渍土大型冻融循环剪切试验[J]. 长安大学学报: 自然科学版, 2012, 32(3): 11-16. doi: 10.3969/j.issn.1671-8879.2012.03.003

    Zhang Shasha, Yang Xiaohua. Large-scale freeze-thaw cycle shear test of coarse-grained saline soil[J]. Journal of Chang'an University : Natural Science Edition, 2012, 32(3): 11-16. doi: 10.3969/j.issn.1671-8879.2012.03.003
    [8] 冯勇, 何建新, 刘亮, 等. 冻融循环作用下细粒土抗剪强度特性试验研究[J]. 冰川冻土, 2008, 30(6): 1013-1017. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200806014.htm

    Feng Yong, He Jianxin, Liu Liang, et al. Experimental study on the shear strength characteristics of fine-grained soil under freeze-thaw cycles[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 1013-1017. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200806014.htm
    [9] 周有禄, 武小鹏, 李奋, 等. 冻融循环作用下重塑黄土强度劣化试验研究[J]. 铁道建筑, 2018, 58(10): 78-80. doi: 10.3969/j.issn.1003-1995.2018.10.19

    Zhou Youlu, Wu Xiaopeng, Li Fen, et al. Experimental study on strength degradation of remolded loess under freeze-thaw cycles[J]. Railway Construction, 2018, 58(10): 78-80. doi: 10.3969/j.issn.1003-1995.2018.10.19
    [10] 王静, 刘寒冰, 吴春利. 冻融循环对不同塑性指数路基土弹性模量的影响研究[J]. 岩土力学, 2012, 33(12): 3665-3668. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212023.htm

    Wang Jing, Liu Hanbing, Wu Chunli. Study on the influence of freeze-thaw cycles on the elastic modulus of subgrade soils with different plasticity indexes[J]. Rock and Soil Mechanics, 2012, 33(12): 3665-3668. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212023.htm
    [11] Zhou Zhong, Xing Kai, Yang Hao. Damage mechanism of soil-rock mixture after freeze-thaw cycles[J]. Journal of Central South University, 2019, 26(1): 13-24. doi: 10.1007/s11771-019-3979-9
    [12] Tang Liyun, Li Guo, Li Zhen, et al. Shear properties and pore structure characteristics of soil-rock mixture under freeze-thaw cycles[J]. Bulletin of Engineering Geology and the Environment, 2021, 10(7): 1-17.
    [13] 王宇, 李晓, 李守定, 等. 单轴压缩条件下土石混合体开裂特征研究[J]. 岩石力学与工程学报, 2015, 34(S1): 3541-3552. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1116.htm

    Wang Yu, Li Xiao, Li Shouding, et al. Research on cracking characteristics of soil-rock mixture under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3541-3552. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1116.htm
    [14] 李长圣, 张丹, 王宏宪, 等. 基于CT扫描的土石混合体三维数值网格的建立[J]. 岩土力学, 2014, 35(9): 2731-2736. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409043.htm

    Li Changsheng, Zhang Dan, Wang Hongxian, et al. Establishment of three-dimensional numerical grid of soil-rock mixture based on CT scanning[J]. Rock and Soil Mechanics, 2014, 35(9): 2731-2736. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409043.htm
    [15] 苑伟娜, 李晓, 赫建明, 等. 土石混合体变形破坏结构效应的CT试验研究[J]. 岩石力学与工程学报, 2013, 32(S2): 3134-3140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2020.htm

    Yuan Weina, Li Xiao, He Jianming, et al. CT test study on deformation failure structure effect of soil-rock mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3134-3140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2020.htm
    [16] 孙华飞, 鞠杨, 行明旭, 等. 基于CT图像的土石混合体破裂-损伤的三维识别与分析[J]. 煤炭学报, 2014, 39(3): 452-459. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201403010.htm

    Sun Huafei, Ju Yang, Xing Mingxu, et al. Three-dimensional recognition and analysis of rupture-damage of soil-rock mixture based on CT images[J]. Journal of China Coal Society, 2014, 39(3): 452-459. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201403010.htm
    [17] 高建, 吕静. 应用CT成像技术研究岩心孔隙度分布特征[J]. CT理论与应用研究, 2009, 18(2): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-CTLL200902010.htm

    Gao Jian, Lü Jing. Application of CT imaging technology to study core porosity distribution characteristics[J]. CT Theory and Application Research, 2009, 18(2): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-CTLL200902010.htm
    [18] Chen Jianxun, Deng Xianghui, Luo Yanbin. Investigation of micro structural damage in shotcrete under a freeze-thaw environment[J]. Construction and Buildings Materials, 2015, 83(8): 275-282.
    [19] Promentilla M A B, Sugiyama T. X-Ray microtomography of mortars exposed to freezing-thawing action[J]. Journal of Advanced Concrete Technology, 2010, 8(2): 97-111. doi: 10.3151/jact.8.97
    [20] Xue G, Yilmaz E, Sond W, et al. Analysis of internal structure behavior of fiber reinforced cement-tailings matrix composites through X-ray computed tomography[J]. Composites Part B: Engineering, 2019, 175: 107091. doi: 10.1016/j.compositesb.2019.107091
    [21] 唐建一, 徐东升, 刘华北. 含石量对土石混合体剪切特性的影响[J]. 岩土力学, 2018, 39(1): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801013.htm

    Tang Jianyi, Xu Dongsheng, Liu Huabei. The influence of rock content on the shear characteristics of soil-rock mixture[J]. Rock and Soil Mechanics, 2018, 39(1): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801013.htm
    [22] 艾啸韬, 王光进, 张超, 等. 宽级配废石的高排土场稳定性研究[J]. 岩土力学, 2020, 41(11): 3777-3788. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011030.htm

    Ai Xiaotao, Wang Guangjin, Zhang Chao, et al. Study on the stability of high dumping sites of wide-graded waste rock[J]. Rock and Soil Mechanics, 2020, 41(11): 3777-3788. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011030.htm
    [23] 江洎洧, 项伟, 张雪杨. 基于CT扫描和仿真试验研究黄土坡滑坡原状滑带土力学参数[J]. 岩石力学与工程学报, 2011, 30(5): 1025-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105021.htm

    Jiang Jiwei, Xiang Wei, Zhang Xueyang. Research on the mechanical parameters of the undisturbed sliding zone soil of Huangtupo landslide based on CT scanning and simulation test[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 1025-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105021.htm
    [24] 吕士展, 汪稔, 胡明鉴, 等. 玉龙雪山西麓原状冰碛土CT扫描试验研究[J]. 岩土力学, 2014, 35(6): 1593-1599. Lü https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406012.htm

    Shizhan, Wang Ren, Hu Mingjian, et al. CT scan test study of undisturbed moraine soil at the western foot of Yulong Snow Mountain[J]. Rock and Soil Mechanics, 2014, 35(6): 1593-1599. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406012.htm
    [25] 高峰, 熊信, 周科平, 等. 冻融循环作用下饱水砂岩的强度劣化模型[J]. 岩土力学, 2019, 40(3): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903011.htm

    Gao Feng, Xiong Xin, Zhou Keping, et al. Strength degradation model of saturated sandstone under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2019, 40(3): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903011.htm
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  613
  • HTML全文浏览量:  260
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-09-20
  • 刊出日期:  2022-04-20

目录

    /

    返回文章
    返回