留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

咖啡渣生物质炭的制备及其对矿井水中氟离子的去除研究

侯嫔 李佳兴 张春晖 冉雅惠 吴盟盟 肖楠

侯嫔, 李佳兴, 张春晖, 冉雅惠, 吴盟盟, 肖楠. 咖啡渣生物质炭的制备及其对矿井水中氟离子的去除研究[J]. 矿业科学学报, 2021, 6(6): 746-754. doi: 10.19606/j.cnki.jmst.2021.06.014
引用本文: 侯嫔, 李佳兴, 张春晖, 冉雅惠, 吴盟盟, 肖楠. 咖啡渣生物质炭的制备及其对矿井水中氟离子的去除研究[J]. 矿业科学学报, 2021, 6(6): 746-754. doi: 10.19606/j.cnki.jmst.2021.06.014
Hou Pin, Li Jiaxing, Zhang Chunhui, Ran Yahui, Wu Mengmeng, Xiao Nan. Preparation of coffee residual based biochar and its removal of fluoride ions from mine water[J]. Journal of Mining Science and Technology, 2021, 6(6): 746-754. doi: 10.19606/j.cnki.jmst.2021.06.014
Citation: Hou Pin, Li Jiaxing, Zhang Chunhui, Ran Yahui, Wu Mengmeng, Xiao Nan. Preparation of coffee residual based biochar and its removal of fluoride ions from mine water[J]. Journal of Mining Science and Technology, 2021, 6(6): 746-754. doi: 10.19606/j.cnki.jmst.2021.06.014

咖啡渣生物质炭的制备及其对矿井水中氟离子的去除研究

doi: 10.19606/j.cnki.jmst.2021.06.014
基金项目: 

国家重点研发计划 2018YFC0406404-5

越崎青年学者资助计划 2020QN09

中央高校基本科研业务费专项资金 2020YQHH03

中关村至臻环保股份有限公司科技项目 U027025

详细信息
    作者简介:

    侯嫔(1985—),女,内蒙古包头人,副教授,博士,主要从事环境材料的制备及其在水处理中应用方面的研究工作。Tel:010-62331464,E-mail:phou.beijing@cumtb.edu.cn

  • 中图分类号: X712

Preparation of coffee residual based biochar and its removal of fluoride ions from mine water

  • 摘要: 近年来矿井水中氟离子含量超标问题尤为突出,不仅影响矿井水处理后的回用水质,而且危害人体健康。为了同时实现固废资源化利用和矿井水中氟离子的去除,本文以废弃咖啡渣为原料,采用化学活化法制备了一种新型矿井水中氟离子的吸附剂——咖啡渣生物质炭(CRB),通过单因素法优化了制备过程中的活化剂种类、活化温度和活化浓度;通过动力学和等温吸附实验对比分析了优化前后CRB对氟离子的吸附效能;通过表面物化特性表征探究了优化后的CRB(O-CRB)对氟离子的吸附机理。结果表明:当采用氯化锌为活化剂、浓度为4 mol/L、活化温度为400 ℃时,获得了吸附性能最优的O-CRB,其对氟离子的最大吸附量为2.20 mg/g,是活化前CRB的1.30倍;与优化前相比,O-CRB的中孔孔容量与比表面积明显增加,含氧官能基团(-COOH)含量和表面Zeta电位升高,且吸附氟离子后O-CRB表面的氯离子含量明显降低(3.27 % 至0.61 %)、氟离子含量明显增加(0.76 % 至10.34 %),从而可推测出O-CRB吸附氟离子的主要机理为静电吸附和离子交换。
  • 图  1  不同种类活化剂对CRB吸附效能的影响

    Figure  1.  Effect of different activators on adsorption efficiency of CRB

    图  2  不同浓度ZnCl2对CRB吸附效能的影响

    Figure  2.  Effect of different concentrations of ZnCl2 on adsorption efficiency of CRB

    图  3  不同活化温度对CRB吸附效能的影响

    Figure  3.  Effect of different activation temperatures on adsorption efficiency of CRB

    图  4  CRB与O-CRB对水中氟离子的动力学吸附曲线

    Figure  4.  Kinetic adsorption curve of fluoride in water for CRB and O-CRB

    图  5  CRB与O-CRB对水中氟离子的等温吸附曲线

    Figure  5.  Isothermal adsorption curves of fluoride in water for CRB and O-CRB

    图  6  CRB与O-CRB的扫描电镜图像

    Figure  6.  Scanning electron microscopy images of CRB and O-CRB

    图  7  CRB、O-CRB和F-OCRB的红外吸收光谱图

    Figure  7.  FTIR of CRB、O-CRB and F-OCRB

    图  8  CRB、O-CRB和F-OCRB的Zeta电位图

    Figure  8.  Zeta potential diagram of CRB、O-CRB and F-OCRB

    表  1  CRB与O-CRB的动力学吸附和等温吸附模型拟合参数

    Table  1.   Fitting parameters of kinetic and isothermal adsorption model for CRB and O-CRB

    类型 准一级动力学 准二级动力学 Langmuir Freundlich
    K1/min-1 R2 K2/g(mg min)-1 R2 qm/(mg·g-1) KL/(L·mg-1) R2 1/n KF R2
    CRB 0.003 41 0.775 0.078 4 0.999 1.69 3.18 0.999 0.200 1.11 0.952
    O-CRB 0.003 63 0.815 0.049 2 0.999 2.20 7.50 0.999 0.180 1.61 0.860
    下载: 导出CSV

    表  2  3种生物质炭的比表面积、孔容孔径分布和表面元素分析

    Table  2.   Specific surface area, pore volume distribution and surface element analysis of three biochars

    表面特性 CRB O-CRB F-OCRB
    微孔孔容/(cm3 ·g-1) 0.000 15 0.000 069 0.000 26
    中孔孔容/(cm3· g-1) 0.002 5 0.007 6 0.005 3
    总孔容/(cm3· g-1) 0.002 6 0.007 7 0.005 6
    比表面积/(m2· g-1) 0.17 2.49 1.89
    平均孔径/ nm 60.44 12.31 11.83
    cC/% 83.05 83.47 75.77
    cN/% 3.41 2.43 1.68
    cO/% 12.61 10.11 11.59
    cCl/% 0.17 3.27 0.61
    cF/% 0.76 0.73 10.34
    下载: 导出CSV
  • [1] Prabhu S M, Koilraj P, Sasaki K. Synthesis of sucrose-derived porous carbon-doped ZrxLa1-xOOH materials and their superior performance for the simultaneous immobilization of arsenite and fluoride from binary systems[J]. Chemical Engineering Journal, 2017, 325: 1-13. doi: 10.1016/j.cej.2017.05.052
    [2] 苏双青, 赵焰, 徐志清, 等. 我国煤矿矿井水氟污染现状及除氟技术研究[J]. 能源与环保, 2020, 42(11): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT202011002.htm

    Su Shuangqing, Zhao Yan, Xu Zhiqing, et al. Status quo of fluoride pollution of coal mine water in China and research on fluoride removal technology[J]. China Energy and Environmental Protection, 2020, 42(11): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT202011002.htm
    [3] 赵焰, 陆梦楠, 孙斌, 等. 含氟矿井水混凝吸附联合除氟技术工业化应用研究[J]. 煤炭科学技术, 2020, 48(9): 166-172. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202009021.htm

    Zhao Yan, Lu Mengnan, Sun Bin, et al. Research on industrial application of coagulation and adsorption combined with fluorine removal technology in fluorine-containing mine water[J]. Coal Science and Technology, 2020, 48(9): 166-172 https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202009021.htm
    [4] 解国强. 对布尔台煤田地质勘查中水文地质问题的研究[J]. 内蒙古煤炭经济, 2015(2): 208-210. doi: 10.3969/j.issn.1008-0155.2015.02.128

    Xie Guoqiang. Study on hydrogeological problems in the geological exploration of Bultai Coalfield[J]. Inner Mongolia Coal Economy, 2015 (2): 208-210. doi: 10.3969/j.issn.1008-0155.2015.02.128
    [5] 叶群峰, 周小玲. 金华市萤石矿区土壤氟污染评价[J]. 环境科学, 2015, 36(7): 2648-2654. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201507049.htm

    Ye Qunfeng, Zhou Xiaoling. Assessment of soil fluorine pollution in Jinhua fluorite ore areas[J]. Environmental Science, 2015, 36(7): 2648-2654. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201507049.htm
    [6] Iriel A, Bruneel S P, Schenone N, et al. The removal of fluoride from aqueous solution by a lateritic soil adsorption: Kinetic and equilibrium studies[J]. Ecotoxicology and Environmental Safety, 2018, 149: 166-172. doi: 10.1016/j.ecoenv.2017.11.016
    [7] Sehn P. Fluoride removal with extra low energy reverse osmosis membranes: three years of large scale field experience in Finland[J]. Desalination, 2008, 223(1/2/3): 73-84. http://www.onacademic.com/detail/journal_1000034070714710_6d04.html
    [8] Bhadja V, Trivedi J S, Chatterjee U. Efficacy of polyethylene Interpolymer membranes for fluoride and arsenic ion removal during desalination of water via electrodialysis[J]. RSC Advances, 2016, 6(71): 67118-67126. doi: 10.1039/C6RA11450D
    [9] 程浩铭, 张翠玲, 任昊晔, 等. 化学沉淀法处理高氟废水的工艺条件优化[J]. 兰州交通大学学报, 2018, 37(5): 80-84. doi: 10.3969/j.issn.1001-4373.2018.05.014

    Cheng Haoming, Zhang Cuiling, Ren Haoye, et al. Optimization of the technological conditions for the treatment of high fluoride wastewater by the chemical precipitation method[J]. Journal of Lanzhou Jiaotong University, 2018, 37(5): 80-84. doi: 10.3969/j.issn.1001-4373.2018.05.014
    [10] 王国建, 王东田, 陈霞, 等. 吸附法除氟技术的原理与方法[J]. 环境科学与管理, 2008, 33(8): 121-124, 165. doi: 10.3969/j.issn.1673-1212.2008.08.034

    Wang Guojian, Wang Dongtian, Chen Xia, et al. Mechanism and method of fluoride removal by adsorption[J]. Environmental Science and Management, 2008, 33(8): 121-124, 165. doi: 10.3969/j.issn.1673-1212.2008.08.034
    [11] Samarghandi M R, Khiadani M, Foroughi M, et al. Defluoridation of water using activated alumina in presence of natural organic matter via response surface methodology[J]. Environmental Science and Pollution Research, 2016, 23(1): 887-897. doi: 10.1007/s11356-015-5293-x
    [12] 左思敏, 荆肇乾, 陶梦妮, 等. 天然沸石和改性沸石在废水处理中的应用研究[J]. 应用化工, 2019, 48(5): 1136-1139, 1145. doi: 10.3969/j.issn.1671-3206.2019.05.035

    Zuo Simin, Jing Zhaoqian, Tao Mengni, et al. Application of natural zeolite and modified zeolite in wastewater treatment[J]. Applied Chemical Industry, 2019, 48(5): 1136-1139, 1145. doi: 10.3969/j.issn.1671-3206.2019.05.035
    [13] 张启伟, 王桂仙. 竹炭对饮用水中氟离子的吸附条件研究[J]. 广东微量元素科学, 2005, 12(3): 63-66. doi: 10.3969/j.issn.1006-446X.2005.03.016

    Zhang Qiwei, Wang Guixian. Research on removing effects of the bamboo-carbon for fluoride from drink water[J]. Trace Elements Science, 2005, 12(3): 63-66. doi: 10.3969/j.issn.1006-446X.2005.03.016
    [14] 张瑞玲, 李德生, 秦松岩, 等. 新型生物质炭吸附剂对地下水中氟的去除作用[J]. 现代食品科技, 2014, 30(10): 159-164. https://www.cnki.com.cn/Article/CJFDTOTAL-GZSP201410027.htm

    Zhang Ruiling, Li Desheng, Qin Songyan, et al. Removal of fluoride from groundwater using new biochar adsorbents[J]. Modern Food Science and Technology, 2014, 30(10): 159-164. https://www.cnki.com.cn/Article/CJFDTOTAL-GZSP201410027.htm
    [15] Kim M, Choong C E, Hyun S, et al. Mechanism of simultaneous removal of aluminum and fluoride from aqueous solution by La/Mg/Si-activated carbon[J]. Chemosphere, 2020, 253: 126580. doi: 10.1016/j.chemosphere.2020.126580
    [16] 严云, 张宇豪, 曹芮, 等. 磁性荞麦壳炭的制备对水中Cr(Ⅵ)吸附性能的研究[J]. 环境科学与技术, 2019, 42(1): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201901002.htm

    Yan Yun, Zhang Yuhao, Cao Rui, et al. Study of magnetic buckwheat hull biochar: preparation and Cr(Ⅵ) adsorption characteristics[J]. Environmental Science & Technology, 2019, 42(1): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201901002.htm
    [17] Liang Jian, Cai Qin, Li Bo, et al. Preparation and adsorption properties of activated carbon from glutinous rice straw by KOH method[J]. Agricultural Science & Technology, 2015, 16(11): 2549-2551, 2567. http://qikan.cqvip.com/Qikan/Article/Detail?id=666795512
    [18] 侯嫔, 岳烨, 张犇, 等. 荞麦壳基活性炭的制备及其性能研究[J]. 矿业科学学报, 2020, 5 (1): 122-130. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202001013.htm

    Hou Pin, Yue Ye, Zhang Ben, et al. Preparation and characterization of Buckwheat shell-based activated carbon[J]. Journal of Mining Science and Technology, 2020, 5(1): 122-130. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202001013.htm
    [19] 陈秋娟, 谢微, 莫福旺, 等. 磷酸法荔枝核基活性炭的制备及其吸附性能[J]. 食品工业, 2020, 41(11): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SPGY202011015.htm

    Chen Qiujuan, Xie Wei, Mo Fuwang, et al. Preparation and adsorption properties of lychee kernel activated carbon by phosphoric acid method[J]. The Food Industry, 2020, 41(11): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SPGY202011015.htm
    [20] 张会均, 欧阳晚秋, 陈琳莉. 磷酸法茶渣活性炭的制备及吸附性能[J]. 应用化工, 2019, 48(12): 2947-2950. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201912034.htm

    Zhang Huijun, Ouyang Wanqiu, Chen Linli. Characteristics and optimization of activated carbon from tea waste using H3PO4[J]. Applied Chemical Industry, 2019, 48(12): 2947-2950. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201912034.htm
    [21] 邢宝林, 谌伦建, 张传祥, 等. KOH活化法制备褐煤基活性炭的活化机理研究[J]. 中国矿业大学学报, 2014, 43(6): 1038-1045. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201406013.htm

    Xing Baolin, Chen Lunjian, Zhang Chuanxiang, et al. Activation mechanism oflignite-based activated carbon prepared by KOH activation[J]. Journal of China University of Mining & Technology, 2014, 43(6): 1038-1045. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201406013.htm
    [22] 孙龙梅, 张丽平, 薛建华, 等. 活性炭制备方法及应用的研究进展[J]. 化学与生物工程, 2016, 33(3): 5-8. doi: 10.3969/j.issn.1672-5425.2016.03.002

    Sun Longmei, Zhang Liping, Xue Jianhua, et al. Research progress on preparation methods and applications of activated carbon[J]. Chemistry & Bioengineering, 2016, 33(3): 5-8. doi: 10.3969/j.issn.1672-5425.2016.03.002
    [23] 左宋林. 磷酸活化法制备活性炭综述(Ⅰ)——磷酸的作用机理[J]. 林产化学与工业, 2017, 37(3): 1-9. doi: 10.3969/j.issn.0253-2417.2017.03.001

    Zuo Songlin. Review on phosphoric acid activation for preparation of activated carbon(Ⅰ): roles of phosphoric acid[J]. Chemistry and Industry of Forest Products, 2017, 37(3): 1-9. doi: 10.3969/j.issn.0253-2417.2017.03.001
    [24] 范世锁, 刘文浦, 王锦涛, 等. 茶渣生物炭制备及其对溶液中四环素的去除特性[J]. 环境科学, 2020, 41(3): 1308-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202003036.htm

    Fan Shisuo, Liu Wenpu, Wang Jintao, et al. Preparation of tea waste biochar and its application in tetracycline removal from aqueous solution[J]. Environmental Science, 2020, 41(3): 1308-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202003036.htm
    [25] Vithanage M, Herath I, Joseph S, et al. Interaction of arsenic with biochar in soil and water: a critical review[J]. Carbon, 2017, 113: 219-230. doi: 10.1016/j.carbon.2016.11.032
    [26] 刘凌言, 陈双荣, 宋雪燕, 等. 生物炭吸附水中磷酸盐的研究进展[J]. 环境工程, 2020, 38(11): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202011015.htm

    Liu Lingyan, Chen Shuangrong, Song Xueyan, et al. Research progress in removal of phosphate from water by biochar[J]. Environmental Engineering, 2020, 38(11): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202011015.htm
    [27] 王雪颖, 徐冰峰, 喻岚, 等. 咖啡渣颗粒活性炭制备及应用研究进展[J]. 净水技术, 2020, 39(8): 80-88, 108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS202008017.htm

    Wang Xueying, Xu Bingfeng, Yu Lan, et al. Research progress on preparation and application of granular activated carbon from coffee grounds[J]. Water Purification Technology, 2020, 39(8): 80-88, 108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS202008017.htm
    [28] 黄循精. 咖啡副产品的化学成分与综合利用[J]. 热带作物研究, 1987, 7(4): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-RDNK198704019.htm

    Huang Xunjing. Chemical composition and comprehensive utilization of coffee by products[J]. Chinese Journal of Tropical Agriculture, 1987, 7(4): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-RDNK198704019.htm
    [29] 庄圣炜, 孙水裕. 咖啡渣制备活性炭及其在环境污染治理应用进展[J]. 广东化工, 2018, 45(11): 110-113. doi: 10.3969/j.issn.1007-1865.2018.11.048

    Zhuang Shengwei, Sun Shuiyu. Preparation of activated carbon made from coffer grounds and its application in the environmental pollution control: a review[J]. Guangdong Chemical Industry, 2018, 45(11): 110-113. doi: 10.3969/j.issn.1007-1865.2018.11.048
    [30] Hou P, Cannon F S, Nieto-Delgado C, et al. Effect of preparation protocol on anchoring quaternary ammonium/epoxide-forming compound into granular activated carbon for perchlorate adsorption: Enhancement by response surface methodology[J]. Chemical Engineering Journal, 2013, 223(3): 309-317. http://www.sciencedirect.com/science/article/pii/S1385894713003306
    [31] 苑守瑞, 朱义年, 梁美娜. 氯化锌活化法制备柚子皮活性炭[J]. 环境科学与技术, 2010, 33(S1): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2010S1008.htm

    Yuan Shourui, Zhu Yinian, Liang Meina. Preparation of activated carbon from grapefruit bran by activation with zinc chloride[J]. Environmental Science & Technology, 2010, 33(S1): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2010S1008.htm
    [32] 郭刚军, 马尚玄, 胡小静, 等. 氯化锌活化制备澳洲坚果壳活性炭试验[J]. 林业工程学报, 2020, 5(6): 106-113. https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF202006015.htm

    Guo Gangjun, Ma Shangxuan, Hu Xiaojing, et al. Preparation of the activated carbon from Macadamia shell by zinc chloride activation[J]. Journal of Forestry Engineering, 2020, 5(6): 106-113. https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF202006015.htm
    [33] 王云波, 谭万春, 王晓昌, 等. 沸石、骨炭、活性氧化铝除氟效果研究[J]. 西安建筑科技大学学报: 自然科学版, 2002, 34(4): 325-328. doi: 10.3969/j.issn.1006-7930.2002.04.006

    Wang Yunbo, Tan Wanchun, Wang Xiaochang, et al. A study on the effect of fluoride removal by activated zeolite, activated alumina and bone char[J]. Journal of Xi'an University of Architecture & Technology, 2002, 34(4): 325-328. doi: 10.3969/j.issn.1006-7930.2002.04.006
    [34] 谢虹, 贾文波, 吴志刚. 活性氧化铝除氟剂的除氟性能研究[J]. 华中科技大学学报: 医学版, 2005, 34(5): 644-646. doi: 10.3870/j.issn.1672-0741.2005.05.041

    Xie Hong, Jia Wenbo, Wu Zhigang. Performance of activated aluminum oxide as a fluorine-removal agent[J]. Acta Universitatis Medictnae Tangji, 2005, 34(5): 644-646. . doi: 10.3870/j.issn.1672-0741.2005.05.041
    [35] Mullick A, Neogi S. Synthesis of potential biosorbent from used stevia leaves and its application for malachite green removal from aqueous solution: kinetics, isotherm and regeneration studies[J]. RSC Adv, 2016, 6(70): 65960-65975. doi: 10.1039/C6RA15225B
    [36] Mullick A, Neogi S. Ultrasound assisted synthesis of Mg-Mn-Zr impregnated activated carbon for effective fluoride adsorption from water[J]. Ultrasonics Sonochemistry, 2019, 50: 126-137. doi: 10.1016/j.ultsonch.2018.09.010
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  501
  • HTML全文浏览量:  266
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2021-05-03
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回