留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地基真实孔径雷达精度验证方法与实验研究

张浩 杨晓琳 杨峰 张巴图 于正兴 马海涛

张浩, 杨晓琳, 杨峰, 张巴图, 于正兴, 马海涛. 地基真实孔径雷达精度验证方法与实验研究[J]. 矿业科学学报, 2021, 6(6): 721-729. doi: 10.19606/j.cnki.jmst.2021.06.011
引用本文: 张浩, 杨晓琳, 杨峰, 张巴图, 于正兴, 马海涛. 地基真实孔径雷达精度验证方法与实验研究[J]. 矿业科学学报, 2021, 6(6): 721-729. doi: 10.19606/j.cnki.jmst.2021.06.011
Zhang Hao, Yang Xiaolin, Yang Feng, Zhang Batu, Yu Zhengxing, Ma Haitao. Accuracy verification methods and experimental study of ground-based real aperture radar[J]. Journal of Mining Science and Technology, 2021, 6(6): 721-729. doi: 10.19606/j.cnki.jmst.2021.06.011
Citation: Zhang Hao, Yang Xiaolin, Yang Feng, Zhang Batu, Yu Zhengxing, Ma Haitao. Accuracy verification methods and experimental study of ground-based real aperture radar[J]. Journal of Mining Science and Technology, 2021, 6(6): 721-729. doi: 10.19606/j.cnki.jmst.2021.06.011

地基真实孔径雷达精度验证方法与实验研究

doi: 10.19606/j.cnki.jmst.2021.06.011
基金项目: 

国家重点研发计划 2017YFC0804603

国家重点研发计划 2018YFC0808402

山东省重大科技创新工程 2019JZZY020314

中央高校基本科研业务费专项资金 8000150A074

详细信息
    作者简介:

    张浩(1992—),男,河北邢台人,博士研究生,主要从事地基雷达系统设计、雷达数据处理与三维成像等方面的研究工作。Tel:15303199885,E-mail:zhstrive@126.com

  • 中图分类号: TN95

Accuracy verification methods and experimental study of ground-based real aperture radar

  • 摘要: 常规形变监测手段受限于数据精度、监测范围、适用环境等因素,严重制约滑坡、坍塌灾害的预警预报工作。基于差分干涉技术的微波遥感方法是进行非接触表面微小位移高精度监测的先进技术在应急救援、防灾减灾、矿山安全生产、边坡稳定性评估等方面均有有效应用。本文应用自研的地基真实孔径雷达系统,在分析信号模型的基础上,归纳了强散射特性目标回波数据处理流程,提出了适用于验证该类型雷达系统形变监测精度的方法。据此开展了基于三角板角反射器的点目标静止与位移实验,通过雷达回波幅值分析与点云数据拟合,判别预设目标空间位置并确定目标位移标准值,证明了所提方法的有效性和系统0.1 mm监测精度。在内蒙古黑岱沟露天煤矿进行边坡监测实验,结合若干点目标形变数据说明了系统良好的实用性。
  • 图  1  地基真实孔径边坡雷达工作原理

    Figure  1.  S-RAR working principle

    图  2  地基真实孔径边坡雷达回波数据处理流程

    Figure  2.  Flow chart for S-RAR echo data processing

    图  3  标准值误差分析

    Figure  3.  Standard value error analysis

    图  4  地基真实孔径边坡雷达系统组成

    Figure  4.  S-RAR system components

    图  5  监测精度验证流程

    Figure  5.  Flow chart for monitoring accuracy verification

    图  6  实验场景及其三维扫描结果

    Figure  6.  Experimental scene and TLS result

    图  7  角反和雷达坐标原点示意图

    Figure  7.  CR and radar coordinate origin diagram

    图  8  监测场景一维距离像

    Figure  8.  1D range profile of monitoring scenes

    图  9  角反目标回波分析

    Figure  9.  CR taarget echo analysis

    图  10  静止目标位移误差分析

    Figure  10.  Static target displacement error analysis

    图  11  目标复信号分析

    Figure  11.  Target complex signal analysis

    图  12  位移测量结果

    Figure  12.  Results of target displacement measurements

    图  13  目标位移测量误差分析

    Figure  13.  Error analysis of target displacement

    图  14  边坡监测实景

    Figure  14.  Real view of slope monitoring

    图  15  06:04~18:53时间段内边坡目标位移

    Figure  15.  Slope target displacement map in 06:04~18:53

    图  16  特征点位移测量结果

    Figure  16.  Results of feature target displacement measurements

    表  1  地基真实孔径边坡雷达技术参数

    Table  1.   S-RAR technical specifications

    频段/GHz 监测距离/km 水平监测范围/(°) 俯仰监测范围/(°) @1km分辨/(m×m×m)
    14~14.5 2 -120~120 -45~45 0.5×8.7×8.7
    下载: 导出CSV

    表  2  静止目标实验参数

    Table  2.   CR static experiment setting

    角反棱长/mm 信号带宽/MHz 频点数 测量周期/min
    300 500 2 401 5
    下载: 导出CSV

    表  3  地基真实孔径边坡雷达系统参数设置

    Table  3.   S-RAR system parameter setting

    载频/GHz 信号带宽/MHz 频点数 转台步进精度/(°)
    14.25 500 2 401 1
    下载: 导出CSV
  • [1] 李建林. 边坡工程[M]. 重庆: 重庆大学出版社, 2013: 15-18.
    [2] 许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报: 信息科学版, 2020, 45(11): 1651-1659. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011001.htm

    Xu Qiang. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651-1659. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011001.htm
    [3] Monserrat O, Crosetto M, Luzi G. A review of ground-based SAR interferometry for deformation measurement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 40-48. doi: 10.1016/j.isprsjprs.2014.04.001
    [4] 孙远, 杨峰, 郑晶, 等. 基于变分模态分解和小波能量熵的微震信号降噪[J]. 矿业科学学报, 2019, 4(6): 469-479. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201906001.htm

    Sun Yuan, Yang Feng, Zheng Jing, et al. Research on microseismic signal denoising based on variational mode decomposition and wavelet energy entropy[J]. Journal of Mining Science and Technology, 2019, 4(6): 469-479. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201906001.htm
    [5] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 967-979. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm

    Li Zhenhong, Song Chuang, Yu Chen, et al. Application of satellite radar remote sensing to landslide detection and monitoring: challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm
    [6] 郑晶, 曹子原, 姜天琪, 等. 基于深度信念神经网络的微震波到时拾取方法[J]. 矿业科学学报, 2018, 3(6): 521-526. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201806002.htm

    Zheng Jing, Cao Ziyuan, Jiang Tianqi, et al. Deep belief neural network-based arrival picking for microseismic data[J]. Journal of Mining Science and Technology, 2018, 3(6): 521-526. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201806002.htm
    [7] Pieraccini M, Miccinesi L. Ground-based radar interferometry: a bibliographic review[J]. Remote Sensing, 2019, 11(9): 1029. doi: 10.3390/rs11091029
    [8] 吴星辉, 马海涛, 张杰. 地基合成孔径雷达的发展现状及应用[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 1073-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907013.htm

    Wu Xinghui, Ma Haitao, Zhang Jie. Development status and application of ground-based synthetic aperture radar[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1073-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907013.htm
    [9] 马海涛, 张亦海, 于正兴. 滑坡速度倒数法预测模型加速开始点识别及临滑时间预测研究[J]. 岩石力学与工程学报, 2021, 40(2): 355-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102011.htm

    Ma Haitao, Zhang Yihai, Yu Zhengxing. Research on the identification of acceleration starting point in inverse velocity method and the prediction of sliding time[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 355-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102011.htm
    [10] 曾涛, 邓云开, 胡程, 等. 地基差分干涉雷达发展现状及应用实例[J]. 雷达学报, 2019, 8(1): 154-170. https://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201901017.htm

    Zeng Tao, Deng Yunkai, Hu Cheng, et al. Development state and application examples of ground-based differential interferometric radar[J]. Journal of Radars, 2019, 8(1): 154-170. https://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201901017.htm
    [11] Monserrat O, Crosetto M, Luzi G. A review of ground-based SAR interferometry for deformation measurement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 40-48. doi: 10.1016/j.isprsjprs.2014.04.001
    [12] Zheng X T, Yang X L, Ma H T, et al. Integrated ground-based SAR interferometry, terrestrial laser scanner, and corner reflector deformation experiments[J]. Sensors, 2018, 18(12): 4401. doi: 10.3390/s18124401
    [13] Qi L, Tan W X, Huang P P, et al. Landslide prediction method based on a ground-based micro-deformation monitoring radar[J]. Remote Sensing, 2020, 12(8): 1230. doi: 10.3390/rs12081230
    [14] Pasquale G De, Bernardini G, Ricci P P, et al. Ambient vibration testing of bridges by non-contact microwave interferometer[J]. Aerospace and Electronic Systems Magazine, 2010, 25(3): 19-26. doi: 10.1109/MAES.2010.5463952
    [15] 邢诚, 徐亚明, 周校, 等. IBIS-S系统检测方法研究[J]. 测绘地理信息, 2013, 38(4): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201304004.htm

    Xing Cheng, Xu Yaming, Zhou Xiao, et al. Research on the testing methods for IBIS-S system[J]. Journal of Geomatics, 2013, 38(4): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201304004.htm
    [16] 刁建鹏, 梁光胜. 地面雷达的位移监测试验研究[J]. 测绘科学, 2011, 36(2): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201102021.htm

    Diao Jianpeng, Liang Guangsheng. Experimental study on monitoring displacement by ground-based radar[J]. Science of Surveying and Mapping, 2011, 36(2): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201102021.htm
    [17] 占朝彬, 胡玉梅, 王涛. IBIS-S测量系统及精度分析[J]. 城市勘测, 2015(2): 119-121. doi: 10.3969/j.issn.1672-8262.2015.02.037

    Zhan Chaobin, Hu Yumei, Wang Tao. IBIS-S measurement system and its accuracy analysis[J]. Urban Geotechnical Investigation & Surveying, 2015(2): 119-121. doi: 10.3969/j.issn.1672-8262.2015.02.037
    [18] 周吕, 郭际明, 胡纪元, 等. 基于二维形变场的地基SAR精度验证与分析[J]. 武汉大学学报: 信息科学版, 2019, 44(2): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201902020.htm

    Zhou Lü, Guo Jiming, Hu Jiyuan, et al. Verification and analysis of ground-based SAR accuracy based on two-dimensional deformation field[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201902020.htm
    [19] Zhang B C, Ding X L, Werner C, et al. Dynamic displacement monitoring of long-span bridges with a microwave radar interferom-eter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 252-264. doi: 10.1016/j.isprsjprs.2018.02.020
    [20] 王鹏, 徐亚明, 徐进军, 等. 地基干涉雷达变形监测信号静杂波去除方法研究[J]. 测绘通报, 2014(10): 15-18, 40.

    Wang Peng, Xu Yaming, Xu Jinjun, et al. Research on static clutter removal of deformation signal obtained by ground-based interferometric radar[J]. Bulletin of Surveying and Mapping, 2014(10): 15-18, 40.
    [21] Scaioni M, Roncoroni F, Alba M I, et al. Ground-based real-aperture radar for deformation monitoring: experimental tests[C]// In: Gervasi O. et al. (eds) Computational Science and Its Applications-ICCSA 2017, Trieste, Italy: Springer, 2017: 137-151.
    [22] Zheng X T, He X F, Yang X L, et al. Terrain point cloud assisted GB-InSAR slope and pavement deformation differentiate method in an open-pit mine[J]. Sensors, 2020, 20(8): 2337. doi: 10.3390/s20082337
    [23] Bamler R, Hartl P. Synthetic aperture radar interferometry[J]. Inverse Problems, 1998, 14(4): 41-54. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=geology&resid=26/6/559
    [24] Luzi G, Pieraccini M, Mecatti D, et al. Ground-based radar interferometry for landslides monitoring: atmospheric and instrumental decorrelation sources on experimental data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2454-2466. doi: 10.1109/TGRS.2004.836792
    [25] 曲世勃, 王彦平, 谭维贤, 等. 地基SAR形变监测误差分析与实验[J]. 电子与信息学报, 2011, 33(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201101044.htm

    Qu Shibo, Wang Yanping, Tan Weixian, et al. Deformation detection error analysis and experiment using ground based SAR[J]. Journal of Electronics & Information Technology, 2011, 33(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201101044.htm
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  225
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-27
  • 修回日期:  2021-03-22
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回