留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击地压机理要素分析与评价

马念杰 张文龙 李军 连小勇 任建举

马念杰, 张文龙, 李军, 连小勇, 任建举. 冲击地压机理要素分析与评价[J]. 矿业科学学报, 2021, 6(6): 651-658. doi: 10.19606/j.cnki.jmst.2021.06.003
引用本文: 马念杰, 张文龙, 李军, 连小勇, 任建举. 冲击地压机理要素分析与评价[J]. 矿业科学学报, 2021, 6(6): 651-658. doi: 10.19606/j.cnki.jmst.2021.06.003
Ma Nianjie, Zhang Wenlong, Li Jun, Lian Xiaoyong, Ren Jianjü. Analysis and evaluation of essential factors for rock burst mechanism[J]. Journal of Mining Science and Technology, 2021, 6(6): 651-658. doi: 10.19606/j.cnki.jmst.2021.06.003
Citation: Ma Nianjie, Zhang Wenlong, Li Jun, Lian Xiaoyong, Ren Jianjü. Analysis and evaluation of essential factors for rock burst mechanism[J]. Journal of Mining Science and Technology, 2021, 6(6): 651-658. doi: 10.19606/j.cnki.jmst.2021.06.003

冲击地压机理要素分析与评价

doi: 10.19606/j.cnki.jmst.2021.06.003
基金项目: 

国家自然科学基金 51704294

国家自然科学基金 51434006

详细信息
    作者简介:

    马念杰(1959—),男,辽宁开原人,教授,博士生导师,主要从事矿山压力与岩层控制方面的研究工作。Tel:13910506828,E-mail:njma5959@126.com

    通讯作者:

    张文龙(1987—),男,山东潍坊人,博士研究生,主要从事矿山压力与岩层控制、冲击地压机理与监测预警方面的科研工作。Tel: 15615516665,E-mail:15615516665@163.com

  • 中图分类号: TD353

Analysis and evaluation of essential factors for rock burst mechanism

  • 摘要: 本文提出了冲击地压的能量特征和机理要素,初步建立了巷道冲击地压机理评价指标与体系(简称"3+4"指标体系),体系的主准则层为冲击地压的能量释放特征指标和机理要素指标,次准则层为能量释放突然性、瞬间性、集中性以及形成要素、关键要素、假设条件、普遍规律性。采用层次分析法计算了各准则层的权重,提出了综合评价结果的计算方法和分级标准。按照建立的冲击地压机理评价指标体系对蝶型冲击地压机理进行评价,评价结果为"优秀"。研究结果可用于评价现有冲击地压机理,同时为冲击地压机理的后续研究指明了方向。
  • 图  1  蝶型冲击机理揭示的塑性区半径变化曲线

    Figure  1.  Plastic zone radius curve revealed by butterfly rock burst mechanism

    图  2  破裂体与相关区域关系

    Figure  2.  Diagram of relationship between fracture body and related area

    图  3  冲击地压机理评价指标体系

    Figure  3.  Evaluation index system of rock burst mechanism

    表  1  冲击地压机理的假设条件

    Table  1.   Hypothesis of evaluation mechanism

    理论名称 假设条件
    刚度理论     冲击地压是否发生的判据是矿柱刚度与围岩刚度之间的关系
    强度理论     材料处在单轴压力条件下,且破坏是冲击地压性质的
    能量理论     冲击地压是否发生的判据是围岩储存弹性能与破坏阻力之间的关系
    冲击倾向性理论     煤岩体冲击倾向性是冲击事故的主要因素,与外界条件不相关
    "三准则"理论     ①强度准则是煤岩体破坏准则;②能量准则及冲击倾向准则是突然破坏准则;③三个准则同时满足时才会导致冲击地压
    失稳理论     ①冲击地压要在峰值强度以后,煤岩出现应变软化的情况下才有可能发生;②均匀介质,连续变形;③系统各向均处于静水压力作用下
    "三因素"理论     ①结构面是导致冲击发生的主要结构因素;②只有同时满足内在条件、结构条件和应力条件时才有可能导致冲击地压
    蝶型冲击机理     介质的连续变形
    动静载原理     破坏是可积累的
    冲击启动理论     ①冲击地压的发生经历三个阶段:启动-传递-显现;②冲击启动区为巷帮极限平衡区
    下载: 导出CSV

    表  2  准则层权重计算结果

    Table  2.   Weight calculation results of criterion layer

    目标层 主准则层 主准则层权重 次准则层 次准则层权重
    冲击地压机理评价 冲击地压能量释放的特征指标u1 0.50 能量释放突然性u11 0.16
    能量释放瞬间性u12 0.54
    能量释放集中性u13 0.30
    冲击地压机理的要素指标u2 0.50 形成要素u21 0.20
    关键要素u22 0.60
    假设条件u23 0.08
    普遍规律性u24 0.12
    下载: 导出CSV

    表  3  评价等级取值区间

    Table  3.   Value range of evaluation grade

    等级 优秀 良好 合格 较差
    R [0.85~1] [0.7~0.85) [0.6~0.7) [0~0.6)
    下载: 导出CSV
  • [1] 王斌, 宁勇, 冯涛, 等. 加锚砂岩单轴力学特性及屈曲型岩爆控制机制[J]. 中南大学学报: 自然科学版, 2019, 50(9): 2285-2294. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201909025.htm

    Wang Bin, Ning Yong, Feng Tao, et al. Uniaxial mechanical characteristics of anchored sandstone and its mechanism of controlling buckling rockburst[J]. Journal of Central South University: Science and Technology, 2019, 50(9): 2285-2294. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201909025.htm
    [2] 于洋, 耿大新, 童立红, 等. 基于岩爆灾害的围岩变形量时间分形分析[J]. 华中科技大学学报: 自然科学版, 2017, 45(7): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201707007.htm

    Yu Yang, Geng Daxin, Tong Lihong, et al. Analysis of time fractal behavior of deformation associated with immediate rockbursts[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2017, 45(7): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201707007.htm
    [3] 袁亮, 姜耀东, 何学秋, 等. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报, 2018, 43(2): 306-318. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802002.htm

    Yuan Liang, Jiang Yaodong, He Xueqiu, et al. Research progress of precise risk accurate identification and monitoring early warning on typical dynamic disasters in coal mine[J]. Journal of China Coal Society, 2018, 43(2): 306-318. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802002.htm
    [4] 姜耀东, 赵毅鑫. 我国煤矿冲击地压的研究现状: 机制、预警与控制[J]. 岩石力学与工程学报, 2015, 34(11): 2188-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511003.htm

    Jiang Yaodong, Zhao Yixin. State of the art: investigation on mechanism, forecast and control of coal bumps in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2188-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511003.htm
    [5] 李臣, 李鹏, 鲁时雨, 等. 断层保护煤柱下采煤工作面保留巷道破坏分析及其控制[J]. 矿业科学学报, 2020, 5(5): 519-527. doi: 10.19606/j.cnki.jmst.2020.05.006

    Li Chen, Li Peng, Lu Shiyu, et al. Failure analysis and control of retained roadway at working face under protection coal pillar of the faults[J]. Journal of Mining Science and Technology, 2020, 5(5): 519-527. doi: 10.19606/j.cnki.jmst.2020.05.006
    [6] 康红普, 吴拥政, 何杰, 等. 深部冲击地压巷道锚杆支护作用研究与实践[J]. 煤炭学报, 2015, 40(10): 2225-2233. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201510001.htm

    Kang Hongpu, Wu Yongzheng, He Jie, et al. Research and practice of bolting support in deep rock burst roadway[J]. Journal of China Coal Society, 2015, 40(10): 2225-2233. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201510001.htm
    [7] Cook N G W, Hoek E P, Pretorius J P G, et al. Rock mechanics applied to the study of rock burst[J]. Journal-South African Institute of Mining and Metallurgy, 1966, 66(10): 435-528. http://www.researchgate.net/publication/285437763_Rock_mechanics_applied_to_the_study_of_rockbursts
    [8] Brauner G. Kritische spannungen in kohlenflozen[J]. Gluckauf, 1975.
    [9] Cook N G W. A note on rockburst considered as a problem of stability[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1965, 65(8): 437-446. http://journals.co.za/deliver/fulltext/saimm/65/10/4932.pdf?itemId=/content/saimm/65/10/AJA0038223X_4901&mimeType=pdf&containerItemId=content/journal/saimm
    [10] Bieniawski Z T, Denkhaus H G, Vogler U W. Failure of fractured rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1969, 6(3): 323-341. http://www.sciencedirect.com/science/article/pii/0148906269900096
    [11] 李玉生. 冲击地压机理及其初步应用[J]. 中国矿业学院学报, 1985, 14(3): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD198503005.htm

    Li Yusheng. Rockburst mechanism and its preliminary application[J]. Journal of China University of Mining & Technology, 1985, 14(3): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD198503005.htm
    [12] 章梦涛. 冲击地压失稳理论与数值模拟计算[J]. 岩石力学与工程学报, 1987, 6(3): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198703001.htm

    Zhang Mengtao. Instability theory and mathematical model for coal/rock bursts[J]. Chinese Journal of Rock Mechanics and Engineering, 1987, 6(3): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198703001.htm
    [13] 齐庆新, 李宏艳. 冲击地压发生机理的再认识[C]//中国科学技术协会学会学术部. 新观点新学说学术沙龙文集51: 岩爆机理探索, 北京, 2010.
    [14] 窦林名, 何江, 曹安业, 等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报, 2015, 40(7): 1469-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201507001.htm

    Dou Liming, He Jiang, Cao Anye, et al. Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine[J]. Journal of China Coal Society, 2015, 40(7): 1469-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201507001.htm
    [15] 潘俊锋, 宁宇, 毛德兵, 等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报, 2012, 31(3): 586-596. doi: 10.3969/j.issn.1000-6915.2012.03.017

    Pan Junfeng, Ning Yu, Mao Debing, et al. Theory of rockburst start-up during coal mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 586-596. doi: 10.3969/j.issn.1000-6915.2012.03.017
    [16] 赵志强, 马念杰, 郭晓菲, 等. 煤层巷道蝶型冲击地压发生机理猜想[J]. 煤炭学报, 2016, 41(11): 2689-2697. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201611005.htm

    Zhao Zhiqiang, Ma Nianjie, Guo Xiaofei, et al. Mechanism conjecture of butterfly rock burst in coal seam roadway[J]. Journal of China Coal Society, 2016, 41(11): 2689-2697. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201611005.htm
    [17] 马念杰, 赵希栋, 赵志强, 等. 掘进巷道蝶型煤与瓦斯突出机理猜想[J]. 矿业科学学报, 2017, 2(2): 137-149. http://kykxxb.cumtb.edu.cn/article/id/57

    Ma Nianjie, Zhao Xidong, Zhao Zhiqiang, et al. Conjecture about mechanism of butterfly-shape coal and gas outburst in excavation roadway[J]. Journal of Mining Science and Technology, 2017, 2(2): 137-149. http://kykxxb.cumtb.edu.cn/article/id/57
    [18] 宋大钊. 冲击地压演化过程及能量耗散特征研究[D]. 徐州: 中国矿业大学, 2012.
    [19] 王之东, 黎立云, 刘一, 等. 型煤模型冲击失稳破坏中能量释放分析[J]. 矿业科学学报, 2018, 3(6): 527-535. http://kykxxb.cumtb.edu.cn/article/id/181

    Wang Zhidong, Li Liyun, Liu Yi, et al. Analysis of energy release in impact instability damage of briquette model[J]. Journal of Mining Science and Technology, 2018, 3(6): 527-535. http://kykxxb.cumtb.edu.cn/article/id/181
    [20] 潘俊锋, 齐庆新, 刘少虹, 等. 我国煤炭深部开采冲击地压特征、类型及分源防控技术[J]. 煤炭学报, 2020, 45(1): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001012.htm

    Pan Junfeng, Qi Qingxin, Liu Shaohong, et al. Characteristics, types and prevention and control technology of rock burst in deep coal mining in China[J]. Journal of China Coal Society, 2020, 45(1): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001012.htm
    [21] 万志军, 赵阳升, 窦林名, 等. 煤矿冲击地压问题的系统分析法与时间相关性[C]//中国岩石力学与工程学会第七次学术大会论文集, 西安, 2002.
    [22] 张月征, 纪洪广, 彭华, 等. 冲击地压与区域构造应力环境相关性及其应变响应特征[J]. 煤炭学报, 2016, 41(S2): 311-318. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2016S2005.htm

    Zhang Yuezheng, Ji Hongguang, Peng Hua, et al. Correlation between rockburst and regional tectonic stress environment and its strain response characteristics[J]. Journal of China Coal Society, 2016, 41(S2): 311-318. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2016S2005.htm
    [23] 张健. 关于Granger因果分析的方法学研究[D]. 杭州: 浙江大学, 2016.
    [24] 卢丹. 突发事件演化过程控制的关键要素识别方法[D]. 大连: 大连理工大学, 2016.
    [25] Haitjema H. Occam's razor[J]. Ground Water, 2019, 57(3): 349. doi: 10.1111/gwat.12881
    [26] 向开. 论马克思主义真理的普遍性[J]. 理论探索, 1992(2): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-LLTS199202004.htm

    Xiang Kai. On the universality of marxist truth[J]. Theoretical Exploration, 1992(2): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-LLTS199202004.htm
    [27] 于跟波, 杨鹏, 吕文生, 等. 基于层次分析法和模糊决策的残留矿柱回采方案优选[J]. 矿冶, 2014, 23(2): 11-14. doi: 10.3969/j.issn.1005-7854.2014.02.003

    Yu Genbo, Yang Peng, Lu Wensheng, et al. Scheme optimization of residual pillars recovery based on AHP and fuzzy decision[J]. Mining and Metallurgy, 2014, 23(2): 11-14. doi: 10.3969/j.issn.1005-7854.2014.02.003
    [28] 马念杰, 李季, 赵志强. 圆形巷道围岩偏应力场及塑性区分布规律研究[J]. 中国矿业大学学报, 2015, 44(2): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201502002.htm

    Ma Nianjie, LiJi, Zhao Zhiqiang. Distribution of the deviatoric stress field and plastic zone in circular roadway surrounding rock[J]. Journal of China University of Mining & Technology, 2015, 44(2): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201502002.htm
    [29] 马念杰, 郭晓菲, 赵志强, 等. 均质圆形巷道蝶型冲击地压发生机理及其判定准则[J]. 煤炭学报, 2016, 41(11): 2679-2688. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201611004.htm

    Ma Nianjie, Guo Xiaofei, Zhao Zhiqiang, et al. Occurrence mechanisms and judging criterion on circular tunnel butterfly rock burst in homogeneous medium[J]. Journal of China Coal Society, 2016, 41(11): 2679-2688. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201611004.htm
    [30] 马骥, 赵志强, 师皓宇, 等. 基于蝶形破坏理论的地震能量来源[J]. 煤炭学报, 2019, 44(6): 1654-1665. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201906004.htm

    Ma Ji, Zhao Zhiqiang, Shi Haoyu, et al. Sources of seismic energy based on butterfly failure theory[J]. Journal of China Coal Society, 2019, 44(6): 1654-1665. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201906004.htm
    [31] 马念杰, 马骥, 赵志强, 等. X型共轭剪切破裂-地震产生的力学机理及其演化规律[J]. 煤炭学报, 2019, 44(6): 1647-1653. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201906003.htm

    Ma Nianjie, Ma Ji, Zhao Zhiqiang, et al. Mechanical mechanism and evolution of X-shaped conjugate shear fractures-seism[J]. Journal of China Coal Society, 2019, 44(6): 1647-1653. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201906003.htm
    [32] Zhang Wenlong, Ma Nianjie, Ma Ji, et al. Mechanism of rock burst revealed by numerical simulation and energy calculation[J]. Shock and Vibration, 2020(1): 1-15. http://www.researchgate.net/publication/346616521_Mechanism_of_Rock_Burst_Revealed_by_Numerical_Simulation_and_Energy_Calculation
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  716
  • HTML全文浏览量:  210
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 修回日期:  2021-04-14
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回