留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掘进工作面煤壁突然压出影响因素模拟研究

魏诚敏 李璐 王启飞

魏诚敏, 李璐, 王启飞. 掘进工作面煤壁突然压出影响因素模拟研究[J]. 矿业科学学报, 2021, 6(4): 453-461. doi: 10.19606/j.cnki.jmst.2021.04.010
引用本文: 魏诚敏, 李璐, 王启飞. 掘进工作面煤壁突然压出影响因素模拟研究[J]. 矿业科学学报, 2021, 6(4): 453-461. doi: 10.19606/j.cnki.jmst.2021.04.010
Wei Chengmin, Li Lu, Wang Qifei. Simulation study on influencing factors of coal wall sudden extrusion in heading face[J]. Journal of Mining Science and Technology, 2021, 6(4): 453-461. doi: 10.19606/j.cnki.jmst.2021.04.010
Citation: Wei Chengmin, Li Lu, Wang Qifei. Simulation study on influencing factors of coal wall sudden extrusion in heading face[J]. Journal of Mining Science and Technology, 2021, 6(4): 453-461. doi: 10.19606/j.cnki.jmst.2021.04.010

掘进工作面煤壁突然压出影响因素模拟研究

doi: 10.19606/j.cnki.jmst.2021.04.010
基金项目: 

国家自然科学基金 51274206

贵州省科技支撑计划 黔科合支撑[2021]514

详细信息
    作者简介:

    魏诚敏(1996—),男,河南沁阳人,硕士研究生,主要从事煤岩动力灾害、矿井瓦斯防治等方面的研究工作。Tel:15838935105,E-mail:kdaqwcm@163.com

  • 中图分类号: TD713

Simulation study on influencing factors of coal wall sudden extrusion in heading face

  • 摘要: 基于河北邯郸郭二庄矿建立了掘进工作面三维数值模型,利用3DEC离散元模拟软件分析了煤层埋深、掘进速度及煤体力学强度对工作面煤体突然压出的影响,并采用正交试验法将各影响因素依据重要程度进行排序。研究结果表明:掘进工作面上固定点最大水平位移值与埋深变化基本呈正相关线性关系;煤壁压出位移方向均向巷道中轴线靠拢,且水平位移明显大于竖直位移;在埋深600~1 000 m条件下,工作面应力集中区宽度约10 m,应力峰值位置距工作面约5 m;影响掘进工作面煤壁突然压出因素,按照重要程度依次为煤层埋深 > 掘进速度 > 煤体力学强度。研究成果为进一步认识煤壁突然压出及预防措施提供参考。
  • 图  1  掘进工作面采动应力演化

    Figure  1.  Evolution of mining stress in heading face

    图  2  三维模型示意图

    Figure  2.  Schematic diagram of 3D numerical model

    图  3  工作面煤壁位移云图

    Figure  3.  Cloud map of coal wall displacement in working face

    图  4  截面位移矢量

    Figure  4.  Section displacement vector diagram

    图  5  不同埋深工作面水平位移

    Figure  5.  Horizontal displacement of working face with different buried depths

    图  6  监测点水平位移随掘进时间变化

    Figure  6.  Horizontal displacement of monitoring point varies with driving time

    图  7  动态采动下监测点水平位移变化

    Figure  7.  Horizontal displacement change of monitoring point under dynamic mining

    图  8  不同埋深下工作面最大水平位移

    Figure  8.  Maximum horizontal displacement of working face at different buried depths

    图  9  不同掘进速度下工作面最大水平位移

    Figure  9.  Maximum horizontal displacement of working face at different driving speeds

    图  10  不同煤体强度下工作面最大水平位移

    Figure  10.  Maximum horizontal displacement of working face with different coal strength

    表  1  模型力学参数

    Table  1.   Model mechanical parameters

    岩层类别 密度/(kg·m-3) 体积模量/GPa 剪切模量/GPa 内聚力/MPa 抗拉强度/MPa 内摩擦角/(°) 厚度/m
    泥岩 2 300 4.1 2.4 3.6 1.8 35 8.0
    大青灰岩 2 600 5.0 4.0 2.8 3.5 36 5.0
    闪长岩 2 800 4.56 2.32 5.7 3.65 54 24.5
    煤层 1 400 1.0 0.46 1.2 0.6 28 3.5
    粉砂岩 2 650 1.2 0.87 7.4 0.64 38 5.7
    粉砂岩、泥岩互层 2 600 8.83 1.89 1.5 1.0 33 9.8
    本溪灰岩 2 600 4.85 3.8 2.8 3.2 38 3.9
    下载: 导出CSV

    表  2  不同煤层埋深掘进模拟方案

    Table  2.   Simulation scheme in different seam depths

    模拟方案 煤层埋深/m 上覆岩层压力/MPa 总掘进进尺/m 单位时间掘进进尺/m 单次掘进时间/d 总掘进时间/d
    1 600 16 40 5 1 8
    2 700 19 40 5 1 8
    3 800 22 40 5 1 8
    4 900 24 40 5 1 8
    5 1 000 27 40 5 1 8
    下载: 导出CSV

    表  4  试验煤样力学参数

    Table  4.   Mechanical parameters of test coal sample

    力学强度 弹性模量/GPa 体积模量/GPa 剪切模量/GPa 泊松比 内聚力/MPa 摩擦角/(°) 抗拉强度/MPa
    0.4 0.63 0.145 0.39 0.34 22 0.2
    1.2 1 0.46 0.3 1.2 28 0.6
    4.2 2.5 1.72 0.22 2.11 34 2.6
    下载: 导出CSV

    表  5  试验计算结果

    Table  5.   Experimental calculation results

    试验方案 煤层埋深/m 掘进速度/(m·d-1) 试验煤样强度 煤壁最大水平位移/cm
    1 600 5 6.338 8
    2 1 000 10 16.018
    3 800 5 9.669 7
    4 800 10 9.854 8
    5 600 1 4.368 1
    6 600 10 6.433 9
    7 1 000 1 7.309 2
    8 1 000 5 12.609
    9 800 1 7.339 4
    下载: 导出CSV
  • [1] 潘一山. 煤与瓦斯突出、冲击地压复合动力灾害一体化研究[J]. 煤炭学报, 2016, 41(1): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601016.htm

    Pan Yishan. Integrated study on compound dynamic disaster of coal-gas outburst and rockburst[J]. Journal of China Coal Society, 2016, 41(1): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601016.htm
    [2] 李化敏, 付凯. 煤矿深部开采面临的主要技术问题及对策[J]. 采矿与安全工程学报, 2006, 23(4): 468-471. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200604020.htm

    Li Huamin, Fu Kai. Some major technical problems and countermeasures for deep mining[J]. Journal of Mining & Safety Engineering, 2006, 23(4): 468-471. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200604020.htm
    [3] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200516000.htm

    He Manchao, Xie Heping, Peng Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 24(16): 2803-2813. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200516000.htm
    [4] 刘德军, 左建平, 刘海雁, 等. 我国煤矿巷道支护理论及技术的现状与发展趋势[J]. 矿业科学学报, 2020, 5(1): 22-33. http://kykxxb.cumtb.edu.cn/article/id/262

    Liu Dejun, Zuo Jianping, Liu Haiyan, et al. Development and present situation of support theory and technology in coal mine roadway in China[J]. Journal of Mining Science and Technology, 2020, 5(1): 22-33. http://kykxxb.cumtb.edu.cn/article/id/262
    [5] 齐黎明, 葛须宾, 赵嵘. 煤的突然压出机理研究[J]. 煤矿安全, 2014, 45(10): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201410005.htm

    Qi Liming, Ge Xubin, Zhao Rong. Research on coal sudden extrusion mechanism[J]. Safety in Coal Mines, 2014, 45(10): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201410005.htm
    [6] 汪长明. 采煤工作面煤的突然压出机理初探[J]. 矿业安全与环保, 2008, 35(S1): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER2008S1038.htm

    Wang Changming. Preliminary exploration of sudden extruding mechanism of coal in a working face[J]. Mining Safety and Environmental Protection, 2008, 35(S1): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER2008S1038.htm
    [7] 胡千庭, 孟贤正, 张永将, 等. 深部矿井综掘面煤的突然压出机理及其预测[J]. 岩土工程学报, 2009, 31(10): 1487-1492. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200910005.htm

    Hu Qianting, Meng Xianzheng, Zhang Yongjiang, et al. Mechanism and forecast of coal sudden extrusion of fully mechanized driving face in deep mine[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1487-1492. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200910005.htm
    [8] 蒋承林. 煤壁突出孔洞的形成机理研究[J]. 岩石力学与工程学报, 2000, 19(2): 225-228. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200002025.htm

    Jiang Chenglin. Study of forming mechanism of outburst hole[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(2): 225-228. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200002025.htm
    [9] 刘杰. 煤与瓦斯压出动力演化过程及机理实验研究[D]. 徐州: 中国矿业大学, 2014.
    [10] 孟贤正. 综采工作面煤的突然压出危险性预测[D]. 重庆: 重庆大学, 2002.
    [11] 李永亮, 王宇轩, 林海, 等. 两侧采空巷道挤压变形机理与控制对策[J]. 矿业科学学报, 2020, 5(5): 511-518. doi: 10.19606/j.cnki.jmst.2020.05.005

    Li Yongliang, Wang Yuxuan, Lin Hai, et al. Squeezing deformation mechanism and control technology of roadway between two goafs[J]. Journal of Mining Science and Technology, 2020, 5(5): 511-518. doi: 10.19606/j.cnki.jmst.2020.05.005
    [12] 范志忠, 潘黎明. 大采高综采煤壁动静载稳定性及采高的尺度效应研究[J]. 矿业科学学报, 2020, 5(5): 528-535. doi: 10.19606/j.cnki.jmst.2020.05.007

    Fan Zhizhong, Pan Liming. Study on dynamic and static load stability of coal wall and scale effect of mining height in large cutting height working face[J]. Journal of Mining Science and Technology, 2020, 5(5): 528-535. doi: 10.19606/j.cnki.jmst.2020.05.007
    [13] 杨小彬, 周杰, 张子鹏. 含应力包裹体的掘进工作面岩爆力学分析模型探究[J]. 矿业科学学报, 2019, 4(4): 337-342. http://kykxxb.cumtb.edu.cn/article/id/231

    Yang Xiaobin, Zhou Jie, Zhang Zipeng. Statics analysis model for rock burst of driving faces with stress inclusions[J]. Journal of Mining Science and Technology, 2019, 4(4): 337-342. http://kykxxb.cumtb.edu.cn/article/id/231
    [14] 李金雨, 雷文杰, 赵洪宝, 等. 重复爆破采动下煤岩冲击破坏的微震响应特征[J]. 中国矿业大学学报, 2019, 48(5): 966-974. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201905004.htm

    Li Jinyu, Lei Wenjie, Zhao Hongbao, et al. Micro-seismic characteristics during impact failure of coal and rock under repetitive blast mining[J]. Journal of China University of Mining & Technology, 2019, 48(5): 966-974. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201905004.htm
    [15] 伍爱友, 肖红飞, 王从陆, 等. 煤与瓦斯突出控制因素加权灰色关联模型的建立与应用[J]. 煤炭学报, 2005, 30(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200501013.htm

    Wu Aiyou, Xiao Hongfei, Wang Conglu, et al. Establishment and application of weights and gray association model based on coal and gas outburst controlled factors assessment[J]. Journal of China Coal Society, 2005, 30(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200501013.htm
    [16] 王刚, 武猛猛, 王海洋, 等. 基于能量平衡模型的煤与瓦斯突出影响因素的灵敏度分析[J]. 岩石力学与工程学报, 2015, 34(2): 238-248. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502004.htm

    Wang Gang, Wu Mengmeng, Wang Haiyang, et al. Sensitivity analysis of factors affecting coal and gas outburst based on a energy equilibrium model[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 238-248. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502004.htm
    [17] Islam M R, Shinjo R. Numerical simulation of stress distributions and displacements around an entry roadway with igneous intrusion and potential sources of seam gas emission of the Barapukuria coal mine, NW Bangladesh[J]. International Journal of Coal Geology, 2009, 78(4): 249-262. doi: 10.1016/j.coal.2009.03.001
    [18] 罗新荣, 夏宁宁, 贾真真. 掘进煤巷应力仿真和延时煤与瓦斯突出机理研究[J]. 中国矿业大学学报, 2006, 35(5): 571-575. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200605001.htm

    Luo Xinrong, Xia Ningning, Jia Zhenzhen. Research on stress simulation and mechanism of delaying coal and gas outburst in coal driving[J]. Journal of China University of Mining & Technology, 2006, 35(5): 571-575. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200605001.htm
    [19] 舒龙勇, 王凯, 齐庆新, 等. 煤巷掘进面应力场演化特征及突出危险性评价模型[J]. 采矿与安全工程学报, 2017, 34(2): 259-267. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201702009.htm

    Shu Longyong, Wang Kai, Qi Qingxin, et al. Stress field evolution characteristics and coal-gas outburst hazard evaluation model of the heading face in coal roadway[J]. Journal of Mining & Safety Engineering, 2017, 34(2): 259-267. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201702009.htm
    [20] 蓝航, 潘俊锋, 彭永伟. 煤岩动力灾害能量机理的数值模拟[J]. 煤炭学报, 2010, 35(S1): 10-14.

    Lan Hang, Pan Junfeng, Peng Yongwei. Numerical simulation for energy mechanism of underground dynamic disaste[J]. Journal of China Coal Society, 2010, 35(S1): 10-14.
    [21] 康红普, 王金华, 高富强. 掘进工作面围岩应力分布特征及其与支护的关系[J]. 煤炭学报, 2009, 34(12): 1585-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200912003.htm

    Kang Hongpu, Wang Jinhua, Gao Fuqiang. Stress distribution characteristics in rock surrounding heading face and its relationship with supporting[J]. Journal of China Coal Society, 2009, 34(12): 1585-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200912003.htm
    [22] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010: 49-59.
    [23] 尹光志, 王登科. 含瓦斯煤岩耦合弹塑性损伤本构模型研究[J]. 岩石力学与工程学报, 2009, 28(5): 993-999. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200905020.htm

    Yin Guangzhi, Wang Dengke. A coupled elastoplastic damage model for gas-saturated coal[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 993-999. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200905020.htm
    [24] 于永江, 王大国, 李强, 等. 煤岩体的弹塑脆性本构模型及其数值试验[J]. 煤炭学报, 2012, 37(4): 585-589. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201204010.htm

    Yu Yongjiang, Wang Daguo, Li Qiang, et al. Elastic-plastic-brittle constitutive model of rocks and its numerical validation[J]. Journal of China Coal Society, 2012, 37(4): 585-589. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201204010.htm
    [25] 王金安, 焦申华, 谢广祥. 综放工作面开采速率对围岩应力环境影响的研究[J]. 岩石力学与工程学报, 2006, 25(6): 1118-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200606006.htm

    Wang Jin'an, Jiao Shenhua, Xie Guangxiang. Study on influence of mining rate on stress environment in surrounding rock of mechanized top caving mining face[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1118-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200606006.htm
    [26] 董如何, 肖必华, 方永水. 正交试验设计的理论分析方法及应用[J]. 安徽建筑工业学院学报: 自然科学版, 2004, 12(6): 103-106. https://www.cnki.com.cn/Article/CJFDTOTAL-AHJG200406029.htm

    Dong Ruhe, Xiao Bihua, Fang Yongshui. The theoretical analysis of orthogonal test designs[J]. Journal of Anhui Institute of Architecture, 2004, 12(6): 103-106. https://www.cnki.com.cn/Article/CJFDTOTAL-AHJG200406029.htm
    [27] 刘瑞江, 张业旺, 闻崇炜, 等. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201009019.htm

    Liu Ruijiang, Zhang Yewang, Wen Chongwei, et al. Study on the design and analysis methods of orthogonal experiment[J]. Experimental Technology and Management, 2010, 27(9): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201009019.htm
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  217
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-17
  • 修回日期:  2021-03-15
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回