留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿动压巷道围岩稳定性协同卸压控制技术研究

王炯 刘鹏 刘帅 马磊 刘义鹏 陈旭

王炯, 刘鹏, 刘帅, 马磊, 刘义鹏, 陈旭. 煤矿动压巷道围岩稳定性协同卸压控制技术研究[J]. 矿业科学学报, 2021, 6(3): 323-332. doi: 10.19606/j.cnki.jmst.2021.03.009
引用本文: 王炯, 刘鹏, 刘帅, 马磊, 刘义鹏, 陈旭. 煤矿动压巷道围岩稳定性协同卸压控制技术研究[J]. 矿业科学学报, 2021, 6(3): 323-332. doi: 10.19606/j.cnki.jmst.2021.03.009
Wang Jiong, Liu Peng, Liu Shuai, Ma Lei, Liu Yipeng, Chen Xu. Study on collaborative pressure relief control technology for surrounding rock stability of dynamic pressure roadway in coal mine[J]. Journal of Mining Science and Technology, 2021, 6(3): 323-332. doi: 10.19606/j.cnki.jmst.2021.03.009
Citation: Wang Jiong, Liu Peng, Liu Shuai, Ma Lei, Liu Yipeng, Chen Xu. Study on collaborative pressure relief control technology for surrounding rock stability of dynamic pressure roadway in coal mine[J]. Journal of Mining Science and Technology, 2021, 6(3): 323-332. doi: 10.19606/j.cnki.jmst.2021.03.009

煤矿动压巷道围岩稳定性协同卸压控制技术研究

doi: 10.19606/j.cnki.jmst.2021.03.009
基金项目: 

国家自然科学基金 52074300

国家重点研发计划 2016YFC0600901

详细信息
    作者简介:

    王炯(1984—),男,安徽蒙城人,副教授,博士,主要从事切顶卸压无煤柱自成巷(110/N00工法)、深井软岩巷道支护及冲击地压机制与防治等方面的教学与研究工作。Tel: 13810192953,E-mail: wangjiong0216@163.com

  • 中图分类号: TD322

Study on collaborative pressure relief control technology for surrounding rock stability of dynamic pressure roadway in coal mine

  • 摘要: 煤矿动压巷道围岩的稳定性对矿井安全生产至关重要。为有效控制采动压力影响下的巷道失稳变形,以德通煤矿2201工作面动压巷道为工程背景,对动压巷道破坏现象及围岩应力演化规律等进行分析,结果表明:开采动压周期性叠加使巷道围岩垂直应力集中并呈双峰拱形非对称分布,巷道变形呈抛物线形,应力集中和位移最大区域巷道易失稳。因此,提出以双向聚能预裂爆破切顶卸压和恒阻大变形锚索让压支护为基础的动压巷道协同卸压围岩稳定性控制技术。对动压巷道实施双向聚能预裂爆破切顶卸压后,可有效切断动压传递路径,巷道峰值应力差降低19.6 %;再实施恒阻大变形锚索让压支护继续卸压,巷道断面收缩率由60 % 降至13 %,开采动压对巷道稳定性的影响明显削弱,协同卸压围岩稳定性控制技术应用效果良好,可为类似矿山提供有益指导。
  • 图  1  2201工作面布置图

    Figure  1.  The layout of Work surface 2201

    图  2  数值计算模型

    Figure  2.  Numerical simulation model

    图  3  垂直应力监测线示意图

    Figure  3.  Schematic diagram of vertical stress monitoring line

    图  4  动压扰动下巷道周边应力变化规律

    Figure  4.  The law of stress variation around roadway under dynamic pressure disturbance

    图  5  应力集中系数

    Figure  5.  Stress concentration factor

    图  6  轨道大巷左帮峰值应力演化规律

    Figure  6.  Evolution law of peak stress on left side of roadway

    图  7  动压影响下轨道大巷位移变化规律

    Figure  7.  The displacement variation rule of roadway under the influence of dynamic pressure

    图  8  动压巷道协同卸压控制技术流程

    Figure  8.  Collaborative pressure relief control technology process of dynamic pressure roadway

    图  9  双向聚能预裂爆破装置简图

    Figure  9.  Two-way cumulative presplitting blasting device diagram

    图  10  切顶前后垂直应力对比

    Figure  10.  Contrast of vertical stress before and after cutting roof

    图  11  切顶前后应力变化情况(第十次开挖)

    Figure  11.  Stress Variation before and after cutting roof (tenth excavation)

    图  12  切缝窥视结果(单位:m)

    Figure  12.  Borehole imaging of the roof cutting (unit: m)

    图  13  恒阻大变形锚索(NPR)支护岩体工作示意图

    Figure  13.  The NPR cable working as a rock support

    图  14  轨道大巷恒阻锚索补强支护示意图

    Figure  14.  Schematic diagram of NPR cable reinforcement support in roadway

    图  15  轨道大巷顶板锚索应力监测

    Figure  15.  Monitoring curve of anchor cable stress on roof

    图  16  轨道大巷变形监测

    Figure  16.  Monitoring curve of roadway deformation

    表  1  岩体物理力学参数

    Table  1.   The physical and mechanical parameters of rock mass

    岩层名称分层厚度/m体积模量/109Pa剪切模量/109Pa内摩擦角/(°)抗拉强度/106Pa密度/103(kg·m-3)内聚力/106Pa
    泥岩4.5810443.02.51.7
    粉砂岩2.51517352.02.59.0
    泥岩2.0810443.02.51.7
    砂质泥岩1.599303.72.41.7
    粉砂岩4.51517352.02.59.0
    泥岩1.5810443.02.51.7
    煤层6.812300.71.41.1
    砂质泥岩5.099303.72.41.7
    泥岩6.0810443.02.51.7
    下载: 导出CSV
  • [1] 杨军, 高玉兵, 刘世奇, 等. 动压扰动采准巷道围岩失稳机理及控制研究[J]. 矿业科学学报, 2018, 3(5): 451-460. http://kykxxb.cumtb.edu.cn/article/id/171

    Yang Jun, Gao Yubing, Liu Shiqi, et al. Study on failure mechanism and control techniques of the preparation roadway induced by dynamic mining disturbance[J]. Journal of Mining Science and Technology, 2018, 3(5): 451-460. http://kykxxb.cumtb.edu.cn/article/id/171
    [2] 伍永平, 高喜才, 解盘石, 等. 大跨度动压损毁回采巷道修复与支护技术研究[J]. 岩石力学与工程学报, 2011, 30(S1): 3016-3021. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1056.htm

    Wu Yongping, Gao Xicai, Xie Panshi, et al. Studies of repair and supporting technology of large span dynamic mining pressure roadway[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3016-3021. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1056.htm
    [3] 黄兴, 刘泉声, 乔正. 朱集矿深井软岩巷道大变形机制及其控制研究[J]. 岩土力学, 2012, 33(3): 827-834. doi: 10.3969/j.issn.1000-7598.2012.03.028

    Huang Xing, Liu Quansheng, Qiao Zheng. Research on large deformation mechanism and control method of deep soft roadway in Zhuji coal mine[J]. Rock and Soil Mechanics, 2012, 33(3): 827-834. doi: 10.3969/j.issn.1000-7598.2012.03.028
    [4] 陈勇, 郝胜鹏, 陈延涛, 等. 带有导向孔的浅孔爆破在留巷切顶卸压中的应用研究[J]. 采矿与安全工程学报, 2015, 32(2): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201502015.htm

    Chen Yong, Hao Shengpeng, Chen Yantao, et al. Study on the application of short-hole blasting with guide hole to roof cutting pressure relief of gob-side entry retaining[J]. Journal of Mining & Safety Engineering, 2015, 32(2): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201502015.htm
    [5] 王维维, 李凤义, 兰永伟. 切顶卸压沿空留巷技术研究及应用[J]. 黑龙江科技大学学报, 2014, 24(1): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI201401006.htm

    Wang Weiwei, Li Fengyi, Lan Yongwei. Study on and application of pressure relief by roof cutting on gob-entry retaining[J]. Journal of Heilongjiang University of Science and Technology, 2014, 24(1): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI201401006.htm
    [6] 杨晓杰, 王二雨, 张民, 等. 大埋深破碎顶板煤层切顶卸压成巷技术研究[J]. 煤炭科学技术, 2017, 45(9): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709014.htm

    Yang Xiaojie, Wang Eryu, Zhang Min, et al. Research on technique of forming roadway by advanced roof cutting and pressure releasing in depth buried coal seam with broken roof[J]. Coal Science and Technology, 2017, 45(9): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709014.htm
    [7] 王卫军, 袁越, 余伟健, 等. 采动影响下底板暗斜井的破坏机理及其控制[J]. 煤炭学报, 2014, 39(8): 1463-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408013.htm

    Wang Weijun, Yuan Yue, Yu Weijian, et al. Failure mechanism of the subinclined shaft in floor under mining influence and its control[J]. Journal of China Coal Society, 2014, 39(8): 1463-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408013.htm
    [8] 康红普, 林健, 吴拥政. 全断面高预应力强力锚索支护技术及其在动压巷道中的应用[J]. 煤炭学报, 2009, 34(9): 1153-1159. doi: 10.3321/j.issn:0253-9993.2009.09.001

    Kang Hongpu, Lin Jian, Wu Yongzheng. High pretensioned stress and intensive cable bolting technology set in full section and application in entry affected by dynamic pressure[J]. Journal of China Coal Society, 2009, 34(9): 1153-1159. doi: 10.3321/j.issn:0253-9993.2009.09.001
    [9] 陈上元, 宋常胜, 郭志飚, 等. 深部动压巷道非对称变形力学机制及控制对策[J]. 煤炭学报, 2016, 41(1): 246-254. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601033.htm

    Chen Shangyuan, Song Changsheng, Guo Zhibiao, et al. Asymmetric deformation mechanical mechanism and control countermeasure for deep roadway affected by mining[J]. Journal of China Coal Society, 2016, 41(1): 246-254. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601033.htm
    [10] 李家卓, 张继兵, 侯俊领, 等. 动压巷道多次扰动失稳机理及开采顺序优化研究[J]. 采矿与安全工程学报, 2015, 32(3): 439-445. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201503016.htm

    Li Jiazhuo, Zhang Jibing, Hou Junling, et al. Multiple disturbance instability mechanism of dynamic pressure roadway and mining sequence optimization[J]. Journal of Mining & Safety Engineering, 2015, 32(3): 439-445. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201503016.htm
    [11] 张志康, 王连国, 单仁亮, 等. 深部动压巷道高阻让压支护技术研究[J]. 采矿与安全工程学报, 2012, 29(1): 33-37. doi: 10.3969/j.issn.1673-3363.2012.01.006

    Zhang Zhikang, Wang Lianguo, Shan Renliang, et al. Support technology of high resistant and yielding property for deep roadway under dynamic pressure[J]. Journal of Mining & Safety Engineering, 2012, 29(1): 33-37. doi: 10.3969/j.issn.1673-3363.2012.01.006
    [12] 马振乾, 李桂臣. 深部软岩动压巷道围岩控制技术[J]. 煤矿安全, 2011, 42(8): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201108011.htm

    Ma Zhenqian, Li Guichen. Control technology of surrounding rock of roadway under dynamic pressure of deep soft rock[J]. Safety in Coal Mines, 2011, 42(8): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201108011.htm
    [13] 神文龙, 柏建彪, 于洋, 等. 泥质底板动压巷道底鼓机理及控制技术研究[J]. 煤炭科学技术, 2014, 42(3): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201403008.htm

    Shen Wenlong, Bai Jianbiao, Yu Yang, et al. Research on floor heave mechanism and control technology of muddy floor roadway under dynamic pressure[J]. Coal Science and Technology, 2014, 42(3): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201403008.htm
    [14] 郭建平. 坚硬顶板条件下强烈动压巷道变形分析及控制研究[J]. 煤矿开采, 2014, 19(1): 64-66, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201401021.htm

    Guo Jianping. Large deformation analysis of roadway with strong dynamic pressure in mining period and control[J]. Coal Mining Technology, 2014, 19(1): 64-66, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201401021.htm
    [15] 秦天太. 煤巷"锚体结构"支护方法在动压巷道支护中的应用[J]. 煤矿开采, 2012, 17(3): 49-51. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201203018.htm

    Qin Tiantai. Application of anchored structure supporting method in roadway with dynamic pressure[J]. Coal Mining Technology, 2012, 17(3): 49-51. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201203018.htm
    [16] 李永亮, 王宇轩, 林海, 等. 两侧采空巷道挤压变形机理与控制对策[J]. 矿业科学学报, 2020, 5(5): 511-518. doi: 10.19606/j.cnki.jmst.2020.05.005

    Li Yongliang, Wang Yuxuan, Lin Hai, et al. Squeezing deformation mechanism and control technology of roadway between two goafs[J]. Journal of Mining Science and Technology, 2020, 5(5): 511-518. doi: 10.19606/j.cnki.jmst.2020.05.005
    [17] 安博, 郑小慧, 朱淳, 等. 基于切顶短壁梁理论的浅煤层矿压分布规律数值模拟分析[J]. 矿业科学学报, 2019, 4(2): 102-111. http://kykxxb.cumtb.edu.cn/article/id/203

    An Bo, Zheng Xiaohui, Zhu Chun, et al. Numerical simulation analysis of mine pressure distribution of shallow coal seam by truncated short wall beam theory[J]. Journal of Mining Science and Technology, 2019, 4(2): 102-111. http://kykxxb.cumtb.edu.cn/article/id/203
    [18] 陶志刚, 李梦楠, 庞仕辉, 等. 高恒阻大变形锚索静力学特性数值模拟分析及应用[J]. 矿业科学学报, 2020, 5(1): 34-44. http://kykxxb.cumtb.edu.cn/article/id/263

    Tao Zhigang, Li Mengnan, Pang Shihui, et al. Research on mechanical property and engineering application of cable with high constant resistance and large deformation[J]. Journal of Mining Science and Technology, 2020, 5(1): 34-44. http://kykxxb.cumtb.edu.cn/article/id/263
    [19] 马新根, 何满潮, 李先章, 等. 切顶卸压自动成巷覆岩变形机理及控制对策研究[J]. 中国矿业大学学报, 2019, 48(3): 474-483. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201903002.htm

    Ma Xingen, He Manchao, Li Xianzhang, et al. Deformation mechanism and control measures of overlying strata with gob-side entry retaining formed by roof cutting and pressure releasing[J]. Journal of China University of Mining & Technology, 2019, 48(3): 474-483. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201903002.htm
    [20] 何满潮, 宋振骐, 王安, 等. 长壁开采切顶短壁梁理论及其110工法: 第三次矿业科学技术变革[J]. 煤炭科技, 2017(1): 1-9, 13. https://www.cnki.com.cn/Article/CJFDTOTAL-META201701002.htm

    He Manchao, Song Zhenqi, Wang An, et al. Theory of longwall mining by using roof cuting shortwall team and 110 method-the third mining science and technology reform[J]. Coal Science & Technology Magazine, 2017(1): 1-9, 13. https://www.cnki.com.cn/Article/CJFDTOTAL-META201701002.htm
    [21] 陈上元, 赵波, 赵菲, 等. 恒阻大变形锚索力学特性及其在深部切顶留巷中的应用[J]. 煤炭工程, 2020, 52(11): 103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202011022.htm

    Chen Shangyuan, Zhao Bo, Zhao Fei, et al. Mechanical characteristics of constant resistance and large deformation anchor cable and its application in deep gob-side entry retaining by roof cutting[J]. Coal Engineering, 2020, 52(11): 103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202011022.htm
    [22] 陶志刚, 任树林, 王丰年, 等. 高地应力软岩隧道围岩大变形NPR锚索控制方法研究[J]. 隧道建设: 中英文, 2020, 40(S2): 82-92.

    Tao Zhigang, Ren Shulin, Wang Fengnian, et al. Research on NPR anchor cable support scheme for large deformation of surrounding rock in high-ground stress soft rock tunnel[J]. Tunnel Construction, 2020, 40(S2): 82-92.
    [23] 何满潮, 高玉兵, 杨军, 等. 无煤柱自成巷聚能切缝技术及其对围岩应力演化的影响研究[J]. 岩石力学与工程学报, 2017, 36(6): 1314-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201706003.htm

    He Manchao, Gao Yubing, Yang Jun, et al. An energy-gathered roof cutting technique in no-pillar mining and its impact on stress variation in surrounding rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1314-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201706003.htm
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  270
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 修回日期:  2021-04-30
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回