留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

被动围压下层理角度对页岩动态强度及耗能的影响

杨国梁 毕京九 张志飞 李旭光 刘杰 洪培轩

杨国梁, 毕京九, 张志飞, 李旭光, 刘杰, 洪培轩. 被动围压下层理角度对页岩动态强度及耗能的影响[J]. 矿业科学学报, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006
引用本文: 杨国梁, 毕京九, 张志飞, 李旭光, 刘杰, 洪培轩. 被动围压下层理角度对页岩动态强度及耗能的影响[J]. 矿业科学学报, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006
Yang Guoliang, Bi Jingjiu, Zhang Zhifei, Li Xuguang, Liu Jie, Hong Peixuan. The influence of the bedding angle under passive confining pressure on the dynamic strength and energy consumption of shale[J]. Journal of Mining Science and Technology, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006
Citation: Yang Guoliang, Bi Jingjiu, Zhang Zhifei, Li Xuguang, Liu Jie, Hong Peixuan. The influence of the bedding angle under passive confining pressure on the dynamic strength and energy consumption of shale[J]. Journal of Mining Science and Technology, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006

被动围压下层理角度对页岩动态强度及耗能的影响

doi: 10.19606/j.cnki.jmst.2021.02.006
基金项目: 

国家自然科学基金重点项目 51934001

详细信息
    作者简介:

    杨国梁(1979—),男,辽宁葫芦岛人,副教授,博士生导师,主要从事岩石冲击破坏机理的科研与教学工作。Tel:13488810329,E-mail:yanggl531@163.com

    通讯作者:

    毕京九(1995—),男,山东菏泽人,博士研究生,主要从事岩石动力学的研究工作。Tel:18811199578,E-mail:bijingjiu@126.com

  • 中图分类号: TU452

The influence of the bedding angle under passive confining pressure on the dynamic strength and energy consumption of shale

  • 摘要: 页岩在围压条件下的动力学特性,对页岩的高效致裂至关重要。采用分离式霍普金森压杆(SHPB)系统对页岩进行冲击试验,分析被动围压条件下页岩试件的强度特征、损伤特性和能量耗散规律。试验结果表明:在不同应变率下,页岩的损伤程度随冲击速度的提高显著提高,试件承载能力降低;在被动围压条件下,岩石材料的延性和抗破坏能力均得到提高,页岩从无围压条件下的脆性破坏向延性破坏过渡,页岩试件的屈服强度提高2.25~3.06倍,轴向应力峰值为无围压条件下的1.8~2.5倍;在被动围压条件下,页岩试件的能量耗散随平均应变率增大呈线性增长,在试验应变率范围内($\dot{\varepsilon} $ =97~520)具有显著应变率相关性;页岩具有显著的横观各向同性特征,层理角度对页岩试件的强度特征、能量耗散和损伤特性均有显著影响。
  • 图  1  层理角度示意图

    Figure  1.  Schematic diagram of the core angle

    图  2  带被动围压装置的SHPB系统

    Figure  2.  Schematic diagram of SHPB system with a passive containment device

    图  3  冲击气压与冲击速度关系

    Figure  3.  Schematic diagram of the relationship between impact air pressure and impact speed

    图  4  应力平衡验证图

    Figure  4.  Stress balance verification diagram

    图  5  无围压下不同层理角度页岩的典型应力-应变曲线

    Figure  5.  Typical stress-strain curves of shale without confining pressure

    图  6  被动围压下不同层理角度页岩的典型应力-应变曲线

    Figure  6.  Typical stress-strain curves of shale under passive confining pressure

    图  7  屈服强度的确定方式

    Figure  7.  Determination of yield strength

    图  8  不同冲击气压下页岩试件的屈服强度

    Figure  8.  Yield strength of shale specimens under different impact pressures

    图  9  冲击试验中页岩试件的峰值应力

    Figure  9.  Peak stress of shale specimen in impact test

    图  10  典型环向应力时程曲线

    Figure  10.  Typical circumferential stress curve

    图  11  不同冲击气压下的环向应力

    Figure  11.  Circumferential stress under different impact loads

    图  12  不同层理角度页岩试件耗散能与应变率关系拟合曲线

    Figure  12.  Fitting curve of relationship between dissipated energy and strain rate of shale specimens with different bedding angles

    图  13  被动围压条件下页岩损伤变量D与应变率的关系

    Figure  13.  Relationship between shale damage variable D and strain rate under passive confining pressure

    表  1  页岩试件静力学试验结果

    Table  1.   Static test results of shale

    层理角度/(°) 单轴抗压强度/MPa 峰值应变/10-3 弹性模量/GPa
    0 97.34 24.3 6.6
    30 80.06 20.5 6.18
    60 69.26 15.5 6.1
    90 108.21 24.6 7.21
    下载: 导出CSV
  • [1] 张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008, 28(6): 136-140, 159-160. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200806048.htm

    Zhang Jinchuan, Xu Bo, Nie Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6): 136-140, 159-160. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200806048.htm
    [2] 陈军斌. 页岩气储层液体火药高能气体压裂增产关键技术研究[M]. 北京: 科学出版社地质分社, 2017.
    [3] Gong J C, Malvern L E.Passively confined tests of axial dynamic compressive strength of concrete[J]. Experimental Mechanics, 1990, 30(1): 55-59. doi: 10.1007/BF02322703
    [4] 施绍裘, 王礼立. 材料在准一维应变下被动围压的SHPB试验方法[J]. 实验力学, 2000, 15(4): 377-384. doi: 10.3969/j.issn.1001-4888.2000.04.004

    Shi Shaoqiu, Wang Lili. Passive confined pressure SHPB test method for materials under quasi-one dimensional strain state[J]. Journal of Experimental Mechanics, 2000, 15(4): 377-384. doi: 10.3969/j.issn.1001-4888.2000.04.004
    [5] 薛志刚, 胡时胜. 水泥砂浆在围压下的动态力学性能[J]. 工程力学, 2008, 25(12): 184-188, 201. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200812032.htm

    Xue Zhigang, Hu Shisheng. Dynamic behavior of cement mortar under confinement[J]. Engineering Mechanics, 2008, 25(12): 184-188, 201. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200812032.htm
    [6] 武宇, 刘殿书, 吴帅峰, 等. 砂岩冲击损伤与应力波参数关系试验研究[J]. 矿业科学学报, 2018, 3(3): 229-237. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201803003.htm

    Wu Yu, Liu Dianshu, Wu Shuaifeng, et al. Experimental study on relationship between impact damage of sandstone and stress wave parameters[J]. Journal of Mining Science and Technology, 2018, 3(3): 229-237. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201803003.htm
    [7] 李胜林, 凌天龙, 张会歌, 等. 早龄期混凝土动态力学性能实验研究[J]. 矿业科学学报, 2020, 5(5): 502-510. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202005004.htm

    Li Shenglin, Ling Tianlong, Zhang Huige, et al. Experimental research on dynamic mechanics of early age concrete[J]. Journal of Mining Science and Technology, 2020, 5(5): 502-510. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202005004.htm
    [8] 平琦, 马芹永, 卢小雨, 等. 被动围压条件下岩石材料冲击压缩试验研究[J]. 振动与冲击, 2014, 33(2): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201402011.htm

    Ping Qi, Ma Qinyong, Lu Xiaoyu, et al. Impact compression test of rock material under passive confining pressure conditions[J]. Journal of Vibration and Shock, 2014, 33(2): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201402011.htm
    [9] 李祥龙, 刘殿书, 冯明德, 等. 钢质套筒被动围压下混凝土材料的冲击动态力学性能[J]. 爆炸与冲击, 2009, 29(5): 463-467. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200905002.htm

    Li Xianglong, Liu Dianshu, Feng Mingde, et al. Dynamic mechanical properties of concrete materials subjected to passive confining pressure produced by a steel sleeve[J]. Explosion and Shock Waves, 2009, 29(5): 463-467. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200905002.htm
    [10] 李德建, 祁浩, 李春晓, 等. 含层理面煤试样的巴西圆盘劈裂实验及数值模拟研究[J]. 矿业科学学报, 2020, 5(2): 150-159. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202002003.htm

    Li Dejian, Qi Hao, Li Chunxiao, et al. Brazilian disc splitting tests and numerical simulations on coal samples containing bedding planes[J]. Journal of Mining Science and Technology, 2020, 5(2): 150-159. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202002003.htm
    [11] 邓华锋, 王伟, 李建林, 等. 层状砂岩各向异性力学特性试验研究[J]. 岩石力学与工程学报, 2018, 37(1): 112-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801011.htm

    Deng Huafeng, Wang Wei, Li Jianlin, et al. Experimental study on anisotropic characteristics of bedded sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 112-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801011.htm
    [12] 王聪聪, 李江腾, 林杭, 等. 板岩单轴压缩各向异性力学特征[J]. 中南大学学报: 自然科学版, 2016, 47(11): 3759-3764. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201611020.htm

    Wang Congcong, Li Jiangteng, Lin Hang, et al. Anisotropic mechanical characteristics of slate in uniaxial compression[J]. Journal of Central South University: Science and Technology, 2016, 47(11): 3759-3764. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201611020.htm
    [13] 衡帅, 杨春和, 张保平, 等. 页岩各向异性特征的试验研究[J]. 岩土力学, 2015, 36(3): 609-616. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503001.htm

    Heng Shuai, Yang Chunhe, Zhang Baoping, et al. Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics, 2015, 36(3): 609-616. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503001.htm
    [14] 王跃鹏, 刘向君, 梁利喜. 页岩力学特性的层理效应及脆性预测[J]. 岩性油气藏, 2018, 30(4): 149-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201804018.htm

    Wang Yuepeng, Liu Xiangjun, Liang Lixi. Influences of bedding planes on mechanical properties and prediction method of brittleness index in shale[J]. Lithologic Reservoirs, 2018, 30(4): 149-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201804018.htm
    [15] 何柏, 谢凌志, 李凤霞, 等. 龙马溪页岩各向异性变形破坏特征及其机理研究[J]. 中国科学: 物理学力学天文学, 2017, 47(11): 107-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711012.htm

    He Bo, Xie Lingzhi, Li Fengxia, et al. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi shale[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2017, 47(11): 107-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711012.htm
    [16] 中国煤炭工业协会. GB/T 23561 - 2010煤和岩石物理力学性质测定方法[S]. 北京: 中国标准出版社, 2009.
    [17] 许金余, 吕晓聪, 张军, 等. 围压条件下岩石循环冲击损伤的能量特性研究[J]. 岩石力学与工程学报, 2010, 29(S2): 4159-4165. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2102.htm

    Xu Jinyu, Lü Xiaocong, Zhang Jun, et al. Research on energy properties of rock cyclical impact damage under confining pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 4159-4165. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2102.htm
    [18] 翟越, 马国伟, 赵均海, 等. 花岗岩在单轴冲击压缩荷载下的动态断裂分析[J]. 岩土工程学报, 2007, 29(3): 385-390. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200703012.htm

    Zhai Yue, Ma Guowei, Zhao Junhai, et al. Dynamic failure analysis on granite under uniaxial impact compressive load[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 385-390. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200703012.htm
    [19] 林大能, 陈寿如. 循环冲击荷载作用下岩石损伤规律的试验研究[J]. 岩石力学与工程学报, 2005, 24(22): 4094-4098. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200522015.htm

    Lin Daneng, Chen Shouru. Experimental study on damage evolution law of rock under cyclical impact loadings[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(22): 4094-4098. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200522015.htm
    [20] 张全胜, 杨更社, 任建喜. 岩石损伤变量及本构方程的新探讨[J]. 岩石力学与工程学报, 2003, 22(1): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200301004.htm

    Zhang Quansheng, Yang Gengshe, Ren Jianxi. New study of damage variable and constitutive equation of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200301004.htm
    [21] 蔡美峰. 岩石力学与工程[M]. 北京: 科学出版社, 2002.
    [22] 高玮. 岩石力学[M]. 北京: 北京大学出版社, 2010: 29-30.
    [23] 葛修润, 卢应发. 循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J]. 岩土工程学报, 1992, 14(3): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199203006.htm

    Ge Xiurun, Lu Yingfa. Discussion on rock fatigue failure and irreversible deformation under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(3): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199203006.htm
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  429
  • HTML全文浏览量:  194
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-17
  • 修回日期:  2020-04-28
  • 刊出日期:  2021-04-07

目录

    /

    返回文章
    返回