留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深部巷道等强支护控制理论

左建平 文金浩 刘德军 吴丽丽 孙运江

左建平, 文金浩, 刘德军, 吴丽丽, 孙运江. 深部巷道等强支护控制理论[J]. 矿业科学学报, 2021, 6(2): 148-159. doi: 10.19606/j.cnki.jmst.2021.02.002
引用本文: 左建平, 文金浩, 刘德军, 吴丽丽, 孙运江. 深部巷道等强支护控制理论[J]. 矿业科学学报, 2021, 6(2): 148-159. doi: 10.19606/j.cnki.jmst.2021.02.002
Zuo Jianping, Wen Jinhao, Liu Dejun, Wu Lili, Sun Yunjiang. Control theory of uniform strength support in deep roadway[J]. Journal of Mining Science and Technology, 2021, 6(2): 148-159. doi: 10.19606/j.cnki.jmst.2021.02.002
Citation: Zuo Jianping, Wen Jinhao, Liu Dejun, Wu Lili, Sun Yunjiang. Control theory of uniform strength support in deep roadway[J]. Journal of Mining Science and Technology, 2021, 6(2): 148-159. doi: 10.19606/j.cnki.jmst.2021.02.002

深部巷道等强支护控制理论

doi: 10.19606/j.cnki.jmst.2021.02.002
基金项目: 

北京市卓越青年科学家项目 BJJWZYJH01201911413037

国家自然科学基金 51622404

陕煤陕北矿业公司重点项目 2018SMHKJ-A-J-03

详细信息
    作者简介:

    左建平(1978—),男,江西高安人,博士,教授,博士生导师,主要从事采矿岩石力学与岩层控制方面的研究工作。Tel:18910397078,E-mail:zjp@cumtb.edu.cn

  • 中图分类号: TD350.1

Control theory of uniform strength support in deep roadway

  • 摘要: 本文调查了大量的煤矿巷道现场破坏案例,提炼了6类15种典型破坏模式,分析了圆形与矩形巷道的围岩受力特征及应力分布规律。基于巷道围岩梯度破坏机理及矩形巷道等强梁支护模型,提出了深部巷道等强支护控制理论力学概念模型,即根据巷道围岩受力特征,采用开槽卸压、注浆加固、锚杆(索)主动支护、钢管混凝土被动支护等综合手段,有效调整巷道围岩的应力状态,以期实现不同位置围岩能够达到安全且与地应力比相匹配的等效应力状态,获得应力分布趋于均匀、塑性区范围相似的理想状态。给出了不同埋深、不同断面形状巷道所需的等强支护强度计算公式,数值模拟了圆形与矩形巷道在等强支护前、后围岩应力变化,验证了等强支护后围岩应力场能明显改善。等强支护控制模型一定程度上为深部巷道围岩控制提供了理论和实践指导。
  • 图  1  围岩应力分布简化示意图[25]

    Figure  1.  Simplified diagram of stress distribution of surrounding rock[25]

    图  2  局部岩石破坏模式

    Figure  2.  Rock failure in local area

    图  3  拉断破坏模型

    Figure  3.  Tensile failure mode

    图  4  剪切破坏模式

    Figure  4.  Shear failure mode

    图  5  分区破裂化模式

    Figure  5.  Partition fragmentation mode

    图  6  圆形巷道力学模型简化图

    Figure  6.  Simplified diagram of mechanical model of circular roadway

    图  7  不同侧压系数下圆形巷道围岩应力分布

    Figure  7.  The stress distribution of circular roadway surrounding rock under different side pressure coefficients

    图  8  Z平面矩形巷道到ζ平面单位圆的映射关系

    Figure  8.  Mapping relationship between Z plane rectangle and ζ plane unit circle

    图  9  不同宽高比及侧压系数条件下矩形巷道围岩应力分布

    Figure  9.  The stress distribution of rectangular roadway urrounding rock under

    图  10  巷道加固方式示意图

    Figure  10.  Schematic diagram of roadway reinforcement methods

    图  11  巷道等强支护控制理论概念模型示意图

    Figure  11.  Schematic diagram of conceptual modelof uniform strength support control theory

    图  12  等强支护控制理论示意图

    Figure  12.  Schematic diagram of uniform strength support control theory

    图  13  钢管混凝土支架现场应用实例

    Figure  13.  Field application of steel tube confined concrete support

    图  14  等强支护控制应力分布图

    Figure  14.  Stress distribution of uniform strength support control

    表  1  不同宽高比的保角变换参数

    Table  1.   Conformal transformation parameters with different width-height ratios

    c c1 c3 R k
    0.6 -0.210 -0.159 1.903 0.284
    1.0 0 -0.167 2.400 0.250
    1.4 0.139 -0.163 2.869 0.228
    1.8 0.241 -0.157 3.321 0.211
    下载: 导出CSV

    表  2  煤岩力学参数表

    Table  2.   Mechanical parameters of coal and rock

    岩性 密度/(kg·m-3) 剪切模量/GPa 体积模量/GPa 摩擦角/(°) 黏聚力/MPa 抗拉强度/MPa
    2 500 17.4 14.2 37.0 3.70 1.20
    泥岩 2 400 10.5 17.5 24.0 3.20 2.40
    泥岩 2 400 15.5 20.0 25.0 2.20 2.80
    注浆区 2 650 16.8 37.5 40.0 4.60 3.30
    下载: 导出CSV

    表  3  锚杆、锚索参数

    Table  3.   Parameter of bolt and cable

    支护材料 直径/mm 弹性模量/GPa 长度/m 拉断荷载/kN 预应力/kN
    锚杆 22 100 2.4 254 90
    锚索 17.8 210 7 600 140
    下载: 导出CSV

    表  4  钢管混凝土支架参数

    Table  4.   Parameters of concrete-filled steel tube support

    支护材料 极惯性矩 弹性模量/GPa 横截面积/m2 极限弯矩/(N·m) 泊松比
    Beam单元 1.39×10-4 67.7 0.029 6 600 0.25
    下载: 导出CSV
  • [1] 国务院. 两部门关于印发能源发展"十三五"规划的通知[EB/OL]. 2017-01-17. http://www.gov.cn/xinwen/2017-01/17/content_5160588.htm.
    [2] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813. doi: 10.3321/j.issn:1000-6915.2005.16.001

    He Manchao, Xie Heping, Peng Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
    [3] 康红普, 王国法, 姜鹏飞, 等. 煤矿千米深井围岩控制及智能开采技术构想[J]. 煤炭学报, 2018, 43(7): 1789-1800. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807001.htm

    Kang Hongpu, Wang Guofa, Jiang Pengfei, et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000m[J]. Journal of China Coal Society, 2018, 43(7): 1789-1800. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807001.htm
    [4] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm

    Xie Heping. Research review of the state key research development program of China: Deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm
    [5] 李术才, 王汉鹏, 钱七虎, 等. 深部巷道围岩分区破裂化现象现场监测研究[J]. 岩石力学与工程学报, 2008, 27(8): 1545-1553. doi: 10.3321/j.issn:1000-6915.2008.08.003

    Li Shucai, Wang Hanpeng, Qian Qihu, et al. In-situ monitoring research on zonal disintegration of surrounding rock mass in deep mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1545-1553. doi: 10.3321/j.issn:1000-6915.2008.08.003
    [6] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161-2178. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511001.htm

    Xie Heping, Gao Feng, Ju Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2178. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511001.htm
    [7] 冯夏庭, 陈炳瑞, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 即时型岩爆[J]. 岩石力学与工程学报, 2012, 31(3): 433-444. doi: 10.3969/j.issn.1000-6915.2012.03.001

    Feng Xiating, Chen Bingrui, Ming Huajun, et al. Evolution law and mechanism of rockbursts in deep tunnels: immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 433-444. doi: 10.3969/j.issn.1000-6915.2012.03.001
    [8] 钱七虎, 李树忱. 深部岩体工程围岩分区破裂化现象研究综述[J]. 岩石力学与工程学报, 2008, 27(6): 1278-1284. doi: 10.3321/j.issn:1000-6915.2008.06.024

    Qian Qihu, Li Shuchen. A review of research on zonal disintegration phenomenon in deep rock mass engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1278-1284. doi: 10.3321/j.issn:1000-6915.2008.06.024
    [9] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报. 2020, 72: 1-30.

    Kang Hongpu. Seventy years development and prospects of strata control technology for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 72: 1-30.
    [10] 李俊平. 矿山岩石力学[M]. 第2版. 北京: 冶金工业出版社, 2017.
    [11] Brown E T.Putting the NATM into perspective[M]. Tnunnels and Tunneling, Special Issue, 1990.
    [12] N.A. 尤尔饮科. 用能量理论计算锚杆支架参数[M]. 北京: 煤炭工业出版社, 1988.
    [13] 郑雨天. 中国煤矿软岩巷道支护理论与实践[M]. 徐州: 中国矿业大学出版社, 1996.
    [14] 于学馥, 乔端. 轴变论和围岩稳定轴比三规律[J]. 有色金属, 1981(3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS198103001.htm

    Yu Xuefu, Qiao Duan. Theory of axial variation and three rules of axial ratio for stabilizing country rock[J]. Nonferrous Metals, 1981(3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS198103001.htm
    [15] 侯朝炯. 深部巷道围岩控制的关键技术研究[J]. 中国矿业大学学报, 2017, 46(5): 970-978. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201705003.htm

    Hou Chaojiong. Key technologies for surrounding rock control in deep roadway[J]. Journal of China University of Mining & Technology, 2017, 46(5): 970-978. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201705003.htm
    [16] 董方庭, 宋宏伟, 郭志宏, 等. 巷道围岩松动圈支护理论[J]. 煤炭学报, 1994, 19(1): 21-32. doi: 10.3321/j.issn:0253-9993.1994.01.005

    Dong Fangting, Song Hongwei, Guo Zhihong, et al. Roadway support theory based on broken rock zone[J]. Journal of China Coal Society, 1994, 19(1): 21-32. doi: 10.3321/j.issn:0253-9993.1994.01.005
    [17] 何满潮, 高尔新. 软岩巷道耦合支护力学原理及其应用[J]. 水文地质工程地质, 1998, 25(2): 1-4, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG802.000.htm

    He Manchao, Gao Erxin. Coupled supporting mechanical principle and its use in soft pock tunnel[J]. Hydrogeology and Engineering Geology, 1998, 25(2): 1-4, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG802.000.htm
    [18] 何满潮, 袁和生, 靖洪文, 等. 中国煤矿锚杆支护理论与实践[M]. 北京: 科学出版社, 2004.
    [19] 方祖烈. 拉压域特征及主次承载区的维护理论[C]. 世纪之交软岩工程技术现状与展望, 北京: 煤炭工业出版社, 1999: 48-51.

    Fang Zulie.The features of tensile and compressive and the supporting principle of the primary and secondary bearing zone[C]// The Current Conditions and Prospects on the Soft Engineering Technique.Beijing: China Coal Industry Publishing House, 1999: 48-51.
    [20] 康红普. 巷道围岩的承载圈分析[J]. 岩土力学, 1996, 17(4): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX604.014.htm

    Kang Hongpu. Analysis on load bearing ring in surrounding rock of roadway[J]. Rock and Soil Mechanics, 1996, 17(4): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX604.014.htm
    [21] 左建平, 文金浩, 胡顺银, 等. 深部煤矿巷道等强梁支护理论模型及模拟研究[J]. 煤炭学报, 2018, 43(S1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S1001.htm

    Zuo Jianping, Wen Jinhao, Hu Shunyin, et al. Theoretical model and simulation study of uniform strength beam support in deep coal mine roadway[J]. Journal of China Coal Society, 2018, 43(S1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S1001.htm
    [22] 王卫军, 李树清, 欧阳广斌. 深井煤层巷道围岩控制技术及试验研究[J]. 岩石力学与工程学报, 2006, 25(10): 2102-2107. doi: 10.3321/j.issn:1000-6915.2006.10.023

    Wang Weijun, Li Shuqing, Ouyang Guangbin. Study on technique and test of surrounding rock control of deep shaft coal roadway[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2102-2107. doi: 10.3321/j.issn:1000-6915.2006.10.023
    [23] 刘德军, 左建平, 刘海雁, 等. 我国煤矿巷道支护理论及技术的现状与发展趋势[J]. 矿业科学学报, 2020, 5(1): 22-33. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202001003.htm

    Liu Dejun, Zuo Jianping, Liu Haiyan, et al. Development and present situation of support theory and technology in coal mine roadway in China[J]. Journal of Mining Science and Technology, 2020, 5(1): 22-33. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202001003.htm
    [24] 左建平, 孙运江, 王金涛, 等. 大断面破碎巷道全空间桁架锚索协同支护研究[J]. 煤炭科学技术, 2016, 44(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201603001.htm

    Zuo Jianping, Sun Yunjiang, Wang Jintao, et al. Study on full space truss and anchor coordinative support of mine large cross section broken roadway[J]. Coal Science and Technology, 2016, 44(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201603001.htm
    [25] 左建平, 魏旭, 王军, 等. 深部巷道围岩梯度破坏机理及模型研究[J]. 中国矿业大学学报, 2018, 47(3): 478-485. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201803003.htm

    Zuo Jianping, Wei Xu, Wang Jun, et al. Investigation of failure mechanism and model for rocks in deep roadway under stress gradient effect[J]. Journal of China University of Mining & Technology, 2018, 47(3): 478-485. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201803003.htm
    [26] 于学馥, 郑颖人, 刘怀恒. 地下工程围岩稳定分析[M]. 北京: 煤炭工业出版社, 1980.
    [27] 侯朝炯团队. 巷道围岩控制[M]. 徐州: 中国矿业大学出版社, 2013.
    [28] 徐芝纶. 弹性力学[M]. 4版. 北京: 高等教育出版社, 2006.
    [29] 董海龙, 高全臣. 两向不等压巷道围岩塑性区解析的评估与改进[J]. 矿业科学学报, 2019, 4(3): 213-220. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201903003.htm

    Dong Hailong, Gao Quanchen. Evaluation and improvement on analysis of plastic zone in roadway surrounding rock under unequal compression in two directions[J]. Journal of Mining Science and Technology, 2019, 4(3): 213-220. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201903003.htm
    [30] 陈子荫. 围岩力学分析中的解析方法[M]. 北京: 煤炭工业出版社, 1994.
    [31] 吕爱钟, 张路青. 地下隧洞力学分析的复变函数方法[M]. 北京: 科学出版社, 2007.
    [32] 孙训方, 方孝淑, 关来泰. 材料力学[M]. 北京: 高等教育出版社, 2009.
    [33] 左建平, 史月, 刘德军, 等. 深部软岩巷道开槽卸压等效椭圆模型及模拟分析[J]. 中国矿业大学学报, 2019, 48(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201901001.htm

    Zuo Jianping, Shi Yue, Liu Dejun, et al. The equivalent ellipse model and simulation analysis of destressing by cutting groove in deep soft rock roadway[J]. Journal of China University of Mining & Technology, 2019, 48(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201901001.htm
    [34] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 2版. 徐州: 中国矿业大学出版社, 2010.
    [35] 杨军, 高玉兵, 刘世奇, 等. 动压扰动采准巷道围岩失稳机理及控制研究[J]. 矿业科学学报, 2018, 3(5): 451-460. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201805005.htm

    Yang Jun, Gao Yubing, Liu Shiqi, et al. Study on failure mechanism and control techniques of the preparation roadway induced by dynamic mining disturbance[J]. Journal of Mining Science and Technology, 2018, 3(5): 451-460. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201805005.htm
    [36] 高延法, 王波, 王军, 等. 深井软岩巷道钢管混凝土支护结构性能试验及应用[J]. 岩石力学与工程学报, 2010, 29(S1): 2604-2609. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1006.htm

    Gao Yanfa, Wang Bo, Wang Jun, et al. Test on structural property and application of concrete-filled steel tube support of deep mine and soft rock roadway[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2604-2609. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1006.htm
    [37] 王超. 钢管混凝土支架在查干淖尔主斜井极软弱岩层中应用研究[D]. 北京: 中国矿业大学(北京), 2012.
    [38] 王军. 钢管混凝土圆弧拱的抗弯力学性能实验研究与工程应用[D]. 北京: 中国矿业大学(北京), 2014.
    [39] 高延法, 刘珂铭, 冯绍伟, 等. 早强混凝土实验与极软岩巷道钢管混凝土支架应用研究[J]. 采矿与安全工程学报, 2015, 32(4): 537-543. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201504003.htm

    Gao Yanfa, Liu Keming, Feng Shaowei, et al. Early strength concrete experiment and applied research of early strength concrete-filled steel tubular supports in extremely soft rock roadways[J]. Journal of Mining & Safety Engineering, 2015, 32(4): 537-543. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201504003.htm
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  723
  • HTML全文浏览量:  778
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-24
  • 修回日期:  2021-01-18
  • 刊出日期:  2021-04-07

目录

    /

    返回文章
    返回