留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏度对浆液在裂隙岩体中扩散与充填规律的影响

许延春 张二蒙 赵霖 沈星宇 李志宇

许延春, 张二蒙, 赵霖, 沈星宇, 李志宇. 黏度对浆液在裂隙岩体中扩散与充填规律的影响[J]. 矿业科学学报, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008
引用本文: 许延春, 张二蒙, 赵霖, 沈星宇, 李志宇. 黏度对浆液在裂隙岩体中扩散与充填规律的影响[J]. 矿业科学学报, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008
Xu Yanchun, Zhang Ermeng, Zhao Lin, Shen Xingyu, Li Zhiyu. Study on the law of influence by slurry viscosity on the fractured aquifer grouting and diffusion[J]. Journal of Mining Science and Technology, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008
Citation: Xu Yanchun, Zhang Ermeng, Zhao Lin, Shen Xingyu, Li Zhiyu. Study on the law of influence by slurry viscosity on the fractured aquifer grouting and diffusion[J]. Journal of Mining Science and Technology, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008

黏度对浆液在裂隙岩体中扩散与充填规律的影响

doi: 10.19606/j.cnki.jmst.2021.01.008
基金项目: 

国家自然科学基金 51934008

中央高校基本科研业务费专项资金 2020YJSNY15

中央高校基本科研业务费专项资金 C201911379

详细信息
    作者简介:

    许延春(1963—),男,河北唐山人,研究员,博士生导师,主要从事特殊采煤方面的研究工作。E-mail:yanchun-xu@163.com

    通讯作者:

    张二蒙(1994—),男,陕西西安人,博士研究生,主要从事特殊采煤方面的研究工作。Tel:18706782772,E-mail:zem730@outlook.com

  • 中图分类号: TD745

Study on the law of influence by slurry viscosity on the fractured aquifer grouting and diffusion

  • 摘要: 为研究浆液黏度对注浆加固过程中浆液在裂隙中扩散、充填规律的影响,基于新研发的实验系统模拟了三种黏度浆液在承压含水层裂隙中扩散过程,总结了浆液扩散及充填规律;采用Fluent对注浆过程进行仿真,得到了不同黏度浆液充填过程中应力分布及变化规律,解释了物理实验过程中出现的异常现象,并通过超声波探测得出不同黏度浆液改造后的岩体弹性模量变化规律。结果表明:高黏度浆液注浆过程中形成的区域高应力驱动裂隙不规则发育,浆液扩散向右侧偏转;相同应力下岩块弹性模量增强度(λ)与浆液黏度(μe)成正比,实验中λmax=108.07 % (μe=16.67);中等黏度浆液改造效果最好,非完全充填区域面积占比23.35 %,未出现浆液堆积等异常现象。
  • 图  1  实验设备装置系统

    Figure  1.  Experimental equipment system

    图  2  注浆实验流程

    Figure  2.  Flow chart of grouting experiment

    图  3  图像采集方法

    Figure  3.  Schematic diagram of image acquisition method

    图  4  浆液充填MMA模型结果

    Figure  4.  Schematic diagram of MMA model of cement filling results

    图  5  改造后裂隙岩体区域划分示意图

    Figure  5.  Schematic diagram of regional division of fractured rock mass after reconstruction

    图  6  完全充填区域轮廓

    Figure  6.  Diffusion trace contour of full filling area

    图  7  浆液扩散区域轮廓

    Figure  7.  Profile of the slurry diffusion area

    图  8  3条纵向裂隙中浆液衰降结果

    Figure  8.  Results of slurry decline in three longitudinal cracks

    图  9  主要横向裂隙中浆液充填结果

    Figure  9.  Results of slurry decline in transverse cracks

    图  10  t=11 s时浆液扩散形态

    Figure  10.  Phase contour of cement diffusion(t=11 s)

    图  11  t=11 s时浆液应力分布状态

    Figure  11.  Pressure contour of cement diffusion(t=11 s)

    图  12  Lx23、Lx34、Lx45裂隙中应力分布

    Figure  12.  Stress distribution contour in fracture Lx23, Lx34, Lx45

    图  13  注浆口浆液堆积

    Figure  13.  Cement accumulation in grouting port

    图  14  未充填区域预制裂隙开度减小及闭合

    Figure  14.  Pre-fracture aperture reduction and closure in the unfilled area

    图  15  B43-B53岩块受力随时间变化

    Figure  15.  The stress on the B43-B44 changes with time

    图  16  B44-B54岩块受力随时间变化

    Figure  16.  The stress on the B53-B54 changes with time

    表  1  实验参数

    Table  1.   Experimental parameter

    实验编号 注浆实验参数 注浆浆液参数
    实际注入体积/mL 注浆时间/min 水灰比 密度/(g·cm-3) 马氏黏度/s 有效黏度/cP 备注
    A 2 356 9.7 1.8∶1 1.18 29.69 7.32 低黏度
    B 2 420 10.0 1.5∶1 1.26 33.02 11.82 中黏度
    C 2 590 11 1.2∶1 1.37 36.13 16.67 高黏度
    下载: 导出CSV

    表  2  浆液充填扩散结果

    Table  2.   Diffusion result parameter of cement filling

    实验编号 扩散区域 完全充填区域 非完全充填区域
    最远距离/cm 面积/cm2 总占比/% 最远距离/cm 面积/cm2 面积/cm2 最大长度Y/cm 占比/%
    A 74.8 3 139.8 52.33 50.8 2 114.6 1 025.2 24.0 32.65
    B 65.2 3 033.6 50.56 51.1 2 325.4 708.2 14.1 23.35
    C 80.8 3 704.4 61.74 60.6 2 910.5 793.9 20.3 21.43
    下载: 导出CSV

    表  3  注浆前后超声波测缺陷结果

    Table  3.   Ultrasonic defect measurement results before and after grouting

    试块编号 实验编号 注浆前波速v/(km·s-1) 注浆后波速v′/(km·s-1) 注浆前弹性模量Ed/GPa 注浆后弹性模量Ed/GPa 增强度λ/%
    B43-B53 A 3.21 3.55 14.38 23.45 63.07
    B 3.21 3.61 14.38 24.25 68.63
    C 3.21 4.01 14.38 29.92 108.07
    B44-B54 A 3.07 3.59 17.54 23.98 36.75
    B 3.07 3.66 17.54 24.93 42.13
    C 3.07 3.87 17.54 27.87 58.91
    下载: 导出CSV
  • [1] 施龙青, 邱梅, 牛超, 等. 肥城煤田奥灰顶部注浆加固可行性分析[J]. 采矿与安全工程学报, 2015, 32(3): 356-362. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201503002.htm

    Shi Longqing, Qiu Mei, Niu Chao, et al. Feasibility analysis of grouting reinforcement of Ordovician top in Feicheng coalfield[J]. Journal of Mining & Safety Engineering, 2015, 32(3): 356-362. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201503002.htm
    [2] 崔芳鹏, 武强, 林元惠, 等. 中国煤矿水害综合防治技术与方法研究[J]. 矿业科学学报, 2018, 3(3): 219-228. doi: 10.19606/j.cnki.jmst.2018.03.002

    Cui Fangpeng, Wu Qiang, Lin Yuanhui, et al. Prevention and control techniques & methods for water disasters at coal mines in China[J]. Journal of Mining Science and Technology, 2018, 3(3): 219-228. doi: 10.19606/j.cnki.jmst.2018.03.002
    [3] 李慎举, 崔芳鹏, 武强, 等. 霍宝干河煤矿10号煤层底板突水危险性评价与防治[J]. 矿业科学学报, 2016, 1(1): 9-15. http://www.cnki.com.cn/Article/CJFDTotal-KYKX201601003.htm

    Li Shenju, Cui Fangpeng, Wu Qiang, et al. Evaluation and prevention of water hazards of the bottom plate of the 10th coal seam of the Hobogan River Coal Mine[J]. Journal of Mining Science and Technology, 2016, 1(1): 9-15. http://www.cnki.com.cn/Article/CJFDTotal-KYKX201601003.htm
    [4] 赵庆彪. 奥灰岩溶水害区域超前治理技术研究及应用[J]. 煤炭学报, 2014, 39(6): 1112-1117. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406020.htm

    Zhao Qingbiao. Ordovician limestone karst water disaster regional advanced governance technology study and application[J]. Journal of China Coal Society, 2014, 39(6): 1112-1117. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406020.htm
    [5] 许延春, 李见波. 注浆加固工作面底板突水"孔隙-裂隙升降型"力学模型[J]. 中国矿业大学学报2014, 43(1): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201401008.htm

    Xu Yanchun, Li Jianbo, "Pore-fractured lifting type"mechanical model for floor water inrush of the grouting enforcement working face[J]. Journal of China University of Mining & Technology, 2014, 43(1): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201401008.htm
    [6] 王国际. 注浆技术理论与实践[M]. 徐州: 中国矿业大学出版社, 2000.
    [7] 何文瑞, 何富连, 张坤, 等. 淋水软弱巷道注浆加固扩散机理与参数优化的研究[J]. 矿业科学学报, 2019, 4(3): 221-229. http://www.cnki.com.cn/Article/CJFDTotal-KYKX201903004.htm

    He wenrui, He fulian, Zhang kun, et al. Diffusion mechanism and parameter optimization in the process of grouting reinforcement of drenching and soft roadway[J]. Journal of Mining Science and Technology, 2019, 4(3): 221-229. http://www.cnki.com.cn/Article/CJFDTotal-KYKX201903004.htm
    [8] Karol R H.Grout penetrability[C]//Issues in Dam Grouting.ASCE, 2010: 27-33.
    [9] 岩土注浆理论与工程实践协作组. 岩土注浆理论与工程实践[M]. 北京: 科学出版社, 2001.
    [10] 王苏健, 陈通, 李涛, 等. 承压水体上保水采煤注浆材料及技术[J]. 煤炭学报, 2017, 42(1): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701018.htm

    Wang Sujian, Chen Tong, Li Tao, et al. Grouting material and technique in water protection mining above confined water[J]. Journal of China Coal Society, 2017, 42(1);134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701018.htm
    [11] 王强, 冯志强, 王理想, 等. 裂隙岩体注浆扩散范围及注浆量数值模拟[J]. 煤炭学报, 2016, 41(10): 2588-2595. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201610027.htm

    Wang Qiang, Feng Zhiqiang, Wang Lixiang, et al. Numerical analysis of grouting radius and grout quantity in fractured rock mass[J]. Journal of China Coal Society, 2016, 41(10): 2588-2595. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201610027.htm
    [12] 杨仁树, 薛华俊, 郭东明, 等. 基于注浆试验的深井软岩CT分析[J]. 煤炭学报, 2016, 41(2): 345-351. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201602010.htm

    Yang Renshu, Xue Huajun, Guo Dongming, et al. Laboratory grouting experiment based CT analysis of grouted soft rocks in deep mines[J]. Journal of China Coal Society, 2016, 41(2): 345-351. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201602010.htm
    [13] Oka F, Kodaka T, Ohno Y.Applicability of permeation grouting method using colloidal silica for coral sand[J]. Doboku Gakkai Ronbunshuu C, 2008, 64(3): 571-584. doi: 10.2208/jscejc.64.571
    [14] Wang S Y, Chan D, Lam K C.Experimental study of the effect of fines content on dynamic compaction grouting in completely decomposed granite of Hong Kong[J]. Construction and Building Materials, 2009, 23(3): 1249-1264. doi: 10.1016/j.conbuildmat.2008.08.002
    [15] Wang S Y, Chan D H, Lam K C, et al. Numerical and experimental studies of pressure-controlled cavity expansion in completely decomposed granite soils of Hong Kong[J]. Computers and Geo technics, 2010, 37(7/8): 977-990. http://www.sciencedirect.com/science/article/pii/S0266352X10001102
    [16] Masumoto K, Sugita Y, Fujita T, et al. A clay grouting technique for granitic rock adjacent to clay bulkhead[J]. Physics and Chemistry of the Earth, 2006, 32(8): 691-700. http://www.sciencedirect.com/science/article/pii/S1474706506002622
    [17] Shen S L, Wang Z F, Horpibulsuk S, et al. Jet grouting with a newly developed technology: the Twin-Jet method[J]. Engineering Geology, 2013, 152(1): 87-95. doi: 10.1016/j.enggeo.2012.10.018
    [18] 赵庆彪, 毕超, 虎维岳, 等. 裂隙含水层水平孔注浆"三时段"浆液扩散机理研究及应用[J]. 煤炭学报, 2016, 41(5): 1212-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201605021.htm

    Zhao Qingbiao, Bi Chao, Hu Weiyue, et al. Study and application of three-stage seriflux diffusion mechanism in the fissure of aquifer with horizontal injection hole[J]. Journal of China Coal Society, 2016, 41(5): 1212-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201605021.htm
    [19] 江明明. 深厚破碎岩体巷道围岩地面注浆加固技术研究[D]. 淮南: 安徽理工大学, 2014.
    [20] 李召峰. 富水破碎岩体注浆材料研发与注浆加固机理研究及应用[D]. 济南: 山东大学, 2016.
    [21] 文圣勇. 深埋煤岩体注浆加固效应与控制参数研究[D]. 徐州: 中国矿业大学, 2015.
    [22] 刘泉声, 邓鹏海, 毕晨, 等. 深部巷道软弱围岩破裂碎胀过程及锚喷-注浆加固FDEM数值模拟[J]. 岩土力学, 2019, 40(10): 4065-4083. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910043.htm

    Liu Quansheng, Deng Penghai, Bi Chen, et al. FDEM numerical simulation of the fracture and extraction process of soft surrounding rock mass and its rockbolt-shotcrete-grouting reinforcement methods in the deep tunnel[J]. Rock and soil Mechanics, 2019, 40(10): 4065-4083. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910043.htm
    [23] Pitt M J, Liu Haijun. Mars funnel and drilling fluid viscosity: a new equation for oil field applications[J]. Foreign Oilfield Engineering, 2001(12): 28-31.
    [24] 叶茂, 伍超, 陈云良, 等. FLUENT软件在水利工程中的应用[J]. 水利水电科技进展, 2006, 26(3): 78-81. doi: 10.3880/j.issn.1006-7647.2006.03.021

    Ye Mao, Wu Chao, Chen Yunliang, et al. Application of FLUENT to hydraulic projects[J]. Advances in Science and Technology of Water Resources, 2006, 26(3): 78-81. doi: 10.3880/j.issn.1006-7647.2006.03.021
    [25] 王晓. 煤矿用废气处理箱的数值仿真及试验[J]. 煤炭学报, 2019, 44(S2): 737-745. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S2039.htm

    Wang Xiao. Numerical simulation and test of waste gas treatment tank used in coal mine[J]. Journal of China Coal Society, 2019, 44(S2): 737-745. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S2039.htm
    [26] 刘世奇, 许延春, 费宇, 等. 声波检测技术在裂隙岩体注浆加固工程质量检测中的应用[J]. 西安科技大学学报, 2018, 38(3): 396-402. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201803009.htm

    Liu Shiqi, Xu Yanchun, Fei Yu, et al. Application of ultrasonic testing technology to quality inspection of grouting reinforcement in fractured rock mass[J]. Journal of Xi'an University of Science and Technology, 2018, 38(3): 396-402. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201803009.htm
    [27] 许延春, 谢小峰, 刘世奇, 等. 注浆加固工作面底板岩体力学性质"增强-损伤"的定量测定[J]. 采矿与安全工程学报, 2017, 34(6): 1186-1193. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201706024.htm

    Xu Yanchun, Xie Xiaofeng, Liu Shiqi, et al. Quantitative determination of mechanical property of "enhance-damage"for floor rock mass in grouting reinforcement working face[J]. Journal of Mining & Safety Engineering, 2017, 34(6): 1186-1193. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201706024.htm
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  407
  • HTML全文浏览量:  197
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 修回日期:  2020-05-20
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回