留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新疆浅埋地层泥岩的吸水软化特性及隧洞支护对策研究

张勇 石富坤 王俊伟 张家瑄 卢昊 孙晓明

张勇, 石富坤, 王俊伟, 张家瑄, 卢昊, 孙晓明. 新疆浅埋地层泥岩的吸水软化特性及隧洞支护对策研究[J]. 矿业科学学报, 2021, 6(1): 42-50. doi: 10.19606/j.cnki.jmst.2021.01.005
引用本文: 张勇, 石富坤, 王俊伟, 张家瑄, 卢昊, 孙晓明. 新疆浅埋地层泥岩的吸水软化特性及隧洞支护对策研究[J]. 矿业科学学报, 2021, 6(1): 42-50. doi: 10.19606/j.cnki.jmst.2021.01.005
Zhang Yong, Shi Fukun, Wang Junwei, Zhang Jiaxuan, Lu Hao, Sun Xiaoming. Study on softening characteristics of mudstones in shallow buried strata in Xinjiang and countermeasures for tunnel support[J]. Journal of Mining Science and Technology, 2021, 6(1): 42-50. doi: 10.19606/j.cnki.jmst.2021.01.005
Citation: Zhang Yong, Shi Fukun, Wang Junwei, Zhang Jiaxuan, Lu Hao, Sun Xiaoming. Study on softening characteristics of mudstones in shallow buried strata in Xinjiang and countermeasures for tunnel support[J]. Journal of Mining Science and Technology, 2021, 6(1): 42-50. doi: 10.19606/j.cnki.jmst.2021.01.005

新疆浅埋地层泥岩的吸水软化特性及隧洞支护对策研究

doi: 10.19606/j.cnki.jmst.2021.01.005
基金项目: 

国家重点研发计划 2016YFC0600901

国家自然科学基金 51874311

国家自然科学基金 51904306

深部岩土力学与地下工程国家重点实验室(北京)开放基金 SKLGDUEK1826

详细信息
    作者简介:

    张勇(1989—),男,山东济宁人,博士后,主要从事巷道支护、无煤柱开采理论与技术等方面的研究工作。Tel:010-62331294,E-mail: cumtbzy558@163.com

    通讯作者:

    孙晓明(1970—),男,山东泰安人,教授,博士生导师,主要从事岩土工程和软岩工程力学等方面的教学与研究工作。Tel: 010-62331294,E-mail:sunxiaoming@cumtb.edu.cn

  • 中图分类号: TV672+.1

Study on softening characteristics of mudstones in shallow buried strata in Xinjiang and countermeasures for tunnel support

  • 摘要: 新疆输水隧洞围岩为浅埋泥岩地层,吸水后强度软化,支护难度高,对工程进度影响较大。本文以新疆某输水隧洞泥岩为研究对象,在对隧洞的泥岩进行XRD测试分析的基础上,开展不同含水率状态下泥岩单轴压缩和电镜扫描分析实验研究,揭示了岩样内部裂隙、孔隙结构的变化规律及强度软化特征。结果表明:该隧洞泥岩黏土矿物含量高达50 %,易吸水软化。随着含水率的增加,岩样内部将经历微裂隙发育、发展及贯通的破坏过程,同时伴随内部原有矿物流失。通过分析其饱和吸水曲线,将其吸水过程划分为三个阶段:急速吸水、减速吸水及匀速吸水阶段;采用玻尔兹曼预测函数对吸水后岩样强度变化曲线进行拟合,可将其强度变化分为三种状态:强度无损、急速软化及软化休止状态,获得该类型泥岩吸水强度软化的临界点为含水率6 %;综合分析得出其吸水软化规律:泥岩中以蒙脱石为主的黏土矿物吸水能力强,随着吸水量逐渐增加,泥岩孔隙中自由水含量显著提高,骨架强度逐渐降低,形成不稳定态,在受到外力作用时极易发生变形破坏。据此提出了此类软岩工程稳定性控制原则:确定软岩类型及变形力学机制,制定有针对性的稳定性控制对策,采用具有恒阻、大变形及高预应力等力学性能的支护材料。研究成果对深入了解输水隧洞泥岩强度软化特征、隧洞围岩变形破坏机理及支护设计具有重要意义。
  • 图  1  泥岩水理实验示意图

    Figure  1.  Mudstone hydraulic experiment simulation

    图  2  不同含水率的泥岩

    Figure  2.  Mudstones with different water contents

    图  3  岩样浸水不同时间变化情况

    Figure  3.  Variation of rock sample immersion in different time

    图  4  岩样饱和吸水特征曲线

    Figure  4.  Saturated water absorption characteristic curve of rock sample

    图  5  不同含水率下岩样应力-应变曲线

    Figure  5.  Stress-strain curves of rock samples with different water content

    图  6  强度软化百分比曲线及玻尔兹曼拟合

    Figure  6.  Strength softening percentage curve and boltzmann fitting

    图  7  不同含水率的泥岩扫描电镜结果(1 000倍)

    Figure  7.  Scanning electron microscopy results of mudstones with different water contents (1 000 times)

    图  8  不同含水率的泥岩扫描电镜结果(5 000倍)

    Figure  8.  Scanning electron microscopy results of mudstones with different water contents (5 000 times)

    表  1  泥岩全岩矿物组成及黏土矿物含量

    Table  1.   Mineral composition and clay mineral content of mudstone %

    岩样编号 矿物种类和含量 黏土矿物相对含量 混层比
    石英 钾长石 钠长石 方解石 白云石 黏土矿物 蒙脱石 伊/蒙混层 伊利石 高岭石 绿泥石 绿/蒙混层
    1号 25.1 0.8 23.8 50.3 90 2 3 5
    2号 26.6 1.2 22.6 49.6 84 4 6 6
    下载: 导出CSV

    表  3  岩样压缩实验结果

    Table  3.   Experimental results of rock sample compression

    岩样编号 吸水率/% 直径D/mm 高度H/mm 单轴抗压强度 平均值 弹性模量 平均弹性模量 泊松比 平均泊松比
    σc/MPa σc/MPa E/GPa E/GPa ν ν
    B-1 10 49.48 102.00 0.70 0.81 0.24 0.22 0.38 0.37
    B-2 10 49.43 101.20 0.92 0.20 0.36
    B-3 10 49.17 99.87 破坏
    C-1-1 7 49.45 101.20 12.38 12.12 2.99 2.94 0.27 0.29
    C-1-2 7 49.32 99.65 12.19 2.94 0.26
    C-1-3 7 49.28 98.66 11.80 2.89 0.34
    C-2-1 9 49.40 98.30 1.20 1.30 0.20 0.19 0.34 0.36
    C-2-2 9 49.46 98.95 1.39 0.19 0.38
    C-2-3 9 49.87 98.65 破坏
    C-3-1 8 49.65 100.23 2.25 3.25 0.80 0.84 0.34 0.34
    C-3-2 8 49.23 100.12 3.96 0.86 0.37
    C-3-3 8 49.62 99.96 3.47 0.86 0.31
    下载: 导出CSV
  • [1] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813. doi: 10.3321/j.issn:1000-6915.2005.16.001

    He Manchao, Xie Heping, Peng Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
    [2] 何满潮, 孙晓明. 中国煤矿软岩巷道工程支护设计与施工指南[M]. 北京: 科学出版社, 2004.
    [3] 郭宏云, 赵健, 柳培玉. 深部软岩与水作用后的强度软化特性及化学分析[J]. 岩石力学与工程学报, 2018, 37(S1): 3374-3381. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S1027.htm

    Guo Hongyun, Zhao Jian, Liu Peiyu. Strength softening characteristics and chemical analysis of deep soft rock after interaction with water[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3374-3381. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S1027.htm
    [4] 冒海军, 郭印同, 王光进, 等. 黏土矿物组构对水化作用影响评价[J]. 岩土力学, 2010, 31(9): 2723-2728. doi: 10.3969/j.issn.1000-7598.2010.09.006

    Mao Haijun, Guo Yintong, Wang Guangjin, et al. Evaluation of impact of clay mineral fabrics on hydration process[J]. Rock and Soil Mechanics, 2010, 31(9): 2723-2728. doi: 10.3969/j.issn.1000-7598.2010.09.006
    [5] 潘艺, 刘镇, 周翠英. 红层软岩遇水崩解特性试验及其界面模型[J]. 岩土力学, 2017, 38(11): 3231-3239. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711020.htm

    Pan Yi, Liu Zhen, Zhou Cuiying. Experimental study of disintegration characteristics of red-bed soft rock within water and its interface model[J]. Rock and Soil Mechanics, 2017, 38(11): 3231-3239. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711020.htm
    [6] 周翠英, 李伟科, 向中明, 等. 水-应力作用下软岩细观结构摩擦接触分析[J]. 岩土力学, 2015, 36(9): 2458-2466. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509005.htm

    Zhou Cuiying, Li Weike, Xiang Zhongming, et al. Analysis of mesoscopic frictional contacts in soft rocks under water-stress interaction[J]. Rock and Soil Mechanics, 2015, 36(9): 2458-2466. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509005.htm
    [7] 冯夏庭, 王川婴, 陈四利. 受环境侵蚀的岩石细观破裂过程试验与实时观测[J]. 岩石力学与工程学报, 2002, 21(7): 935-939. doi: 10.3321/j.issn:1000-6915.2002.07.001

    Feng Xiating, Wang Chuanying, Chen Sili. Testing study and real-time observation of rock meso-cracking process under chemical erosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7): 935-939. doi: 10.3321/j.issn:1000-6915.2002.07.001
    [8] 邓华锋, 方景成, 李建林, 等. 含水状态对红层软岩力学特性影响机理[J]. 煤炭学报, 2017, 42(8): 1994-2002. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201708010.htm

    Deng Huafeng, Fang Jingcheng, Li Jianlin, et al. Mechanical properties of red-bed soft rock on saturated state[J]. Journal of China Coal Society, 2017, 42(8): 1994-2002. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201708010.htm
    [9] 柴肇云, 张鹏, 郭俊庆, 等. 泥质岩膨胀各向异性与循环胀缩特征[J]. 岩土力学, 2014, 35(2): 346-350, 440. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201402007.htm

    Chai Zhaoyun, Zhang Peng, Guo Junqing, et al. Swelling anisotropy and cyclic swelling-shrinkage of argillaceous rock[J]. Rock and Soil Mechanics, 2014, 35(2): 346-350, 440. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201402007.htm
    [10] 杨永康, 季春旭, 康天合, 等. 大厚度泥岩顶板煤巷破坏机制及控制对策研究[J]. 岩石力学与工程学报, 2011, 30(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201101006.htm

    Yang Yongkang, Ji Chunxu, Kang Tianhe, et al. Damage mechanisms of mudstone roof with great-thick in coal roadway and its controlling countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201101006.htm
    [11] 杨晓杰, 王嘉敏, 张民, 等. 大强煤矿深部巷道围岩吸水软化规律试验研究[J]. 矿业科学学报, 2017, 2(5): 432-438. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201705004.htm

    Yang Xiaojie, Wang Jiamin, Zhang Min, et al. Study on strength softening of surrounding rock in deep roadway at Daqiang coal mine[J]. Journal of Mining Science and Technology, 2017, 2(5): 432-438. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201705004.htm
    [12] 孙晓明, 苗沛阳, 申付新, 等. 不同应力状态下深井水平层状软岩巷道底鼓机理研究[J]. 采矿与安全工程学报, 2018, 35(6): 1099-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201806002.htm

    Sun Xiaoming, Miao Peiyang, Shen Fuxin, et al. Study on floor heave mechanism of horizontal layered soft rock roadway in deep well under different stress states[J]. Journal of Mining & Safety Engineering, 2018, 35(6): 1099-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201806002.htm
    [13] Wang Q, Jiang B, Li S C, et al. Experimental studies on the mechanical properties and deformation & failure mechanism of U-type confined concrete arch centering[J]. Tunnelling and Underground Space Technology, 2016, 51: 20-29. doi: 10.1016/j.tust.2015.10.010
    [14] 张娜, 赵方方, 张毫毫, 等. 岩石气态水吸附特性及其影响因素实验研究[J]. 矿业科学学报, 2017, 2(4): 336-347. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201704004.htm

    Zhang Na, Zhao Fangfang, Zhang Haohao, et al. Experimental study on water vapor absorption of rock and its influencing factors[J]. Journal of Mining Science and Technology, 2017, 2(4): 336-347. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201704004.htm
    [15] 何满潮, 景海河, 孙晓明. 软岩工程力学[M]. 北京: 科学出版社, 2002.
    [16] 张娜, 王水兵, 何枭, 等. 深部煤系页岩吸水及软化效应微观机理研究[J]. 矿业科学学报, 2019, 4(4): 308-317. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201904004.htm

    Zhang Na, Wang Shuibing, He Xiao, et al. Study on micromechanism of water absorption and its softening effect on shale rock in deep coal measures[J]. Journal of Mining Science and Technology, 2019, 4(4): 308-317. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201904004.htm
    [17] 张勇, 孙晓明, 郑有雷, 等. 深部回采巷道防冲释能耦合支护技术及应用[J]. 岩石力学与工程学报, 2019, 38(9): 1860-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909014.htm

    Zhang Yong, Sun Xiaoming, Zheng Youlei, et al. An anti-punching and energy-releasing coupling support technology in deep mining roadway and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1860-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909014.htm
    [18] Sun X M, Zhang Y, Wang D, et al. Mechanical properties and supporting effect of CRLD bolts under static pull test conditions[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(1): 1-9. doi: 10.1007/s12613-017-1372-y
    [19] 何满潮, 王炯, 孙晓明, 等. 负泊松比效应锚索的力学特性及其在冲击地压防治中的应用研究[J]. 煤炭学报, 2014, 39(2): 214-221. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402002.htm

    He Manchao, Wang Jiong, Sun Xiaoming, et al. Mechanics characteristics and applications of prevention and control rock bursts of the negative poisson's ratio effect anchor[J]. Journal of China Coal Society, 2014, 39(2): 214-221. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402002.htm
    [20] He M C, Gong W L, Wang J, et al. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 29-42. doi: 10.1016/j.ijrmms.2014.01.007
    [21] 孙晓明, 王冬, 王聪, 等. 恒阻大变形锚杆拉伸力学性能及其应用研究[J]. 岩石力学与工程学报, 2014, 33(9): 1765-1771. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409006.htm

    Sun Xiaoming, Wang Dong, Wang Cong, et al. Tensile properties and application of constant resistance and large deformation bolts[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1765-1771. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409006.htm
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  122
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-07
  • 修回日期:  2019-12-08
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回