留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Timoshenko梁的盾构上跨对既有隧道纵向变形影响研究

韦征 江玉生

韦征, 江玉生. 基于Timoshenko梁的盾构上跨对既有隧道纵向变形影响研究[J]. 矿业科学学报, 2021, 6(1): 30-41. doi: 10.19606/j.cnki.jmst.2021.01.004
引用本文: 韦征, 江玉生. 基于Timoshenko梁的盾构上跨对既有隧道纵向变形影响研究[J]. 矿业科学学报, 2021, 6(1): 30-41. doi: 10.19606/j.cnki.jmst.2021.01.004
Wei Zheng, Jiang Yusheng. Study on the influence of above-crossing tunneling on the existing shield tunnels based on timoshenko beam[J]. Journal of Mining Science and Technology, 2021, 6(1): 30-41. doi: 10.19606/j.cnki.jmst.2021.01.004
Citation: Wei Zheng, Jiang Yusheng. Study on the influence of above-crossing tunneling on the existing shield tunnels based on timoshenko beam[J]. Journal of Mining Science and Technology, 2021, 6(1): 30-41. doi: 10.19606/j.cnki.jmst.2021.01.004

基于Timoshenko梁的盾构上跨对既有隧道纵向变形影响研究

doi: 10.19606/j.cnki.jmst.2021.01.004
基金项目: 

国家自然科学基金煤炭联合基金 U1261212

详细信息
    作者简介:

    韦征(1986—),男,河南安阳人,博士研究生,主要从事城市地下工程中盾构对周围环境影响的研究工作。Tel:010-82365059,E-mail:wzoneacer@163.com

  • 中图分类号: TU443

Study on the influence of above-crossing tunneling on the existing shield tunnels based on timoshenko beam

  • 摘要: 采用修正的Loganathan理论研究了盾构上跨过程中土体损失引起的既有隧道纵向位移,考虑剪切变形的Timoshenko梁理论分析隧道内力变化及管片间错台量,基于弹性力学理论中的剪切效应建立了隧道纵向变形微分方程并求解,研究了隧道剪切刚度、土体损失率对隧道弯矩、剪力、管片间错台量变化规律。将计算结果与已发表监测数据对比,分析了Timoshenko梁发生弯曲变形后梁横截面不再与中性轴垂直,与不考虑剪切变形的Euler-Bernoulli梁的差异。研究表明:考虑剪切变形的理论解能准确预测隧道纵向变形,能矫正不考虑剪切变形条件下弯矩、剪力内力值过大以及无法计算管片错台量的缺陷。研究为预测盾构近距离上跨对既有隧道影响分析提供一种有效方法。
  • 图  1  Timoshenko梁与Euler-Bernoulli梁变形示意图

    Figure  1.  Schematic diagram of timoshenko beam and Euler-Bernoulli beam deformation

    图  2  盾构斜穿既有隧道示意图

    Figure  2.  Schematic diagram of shield tunneling up-crossing existing tunnel at a certain angle

    图  3  盾构开挖对既有隧道的纵向变形影响示意图

    Figure  3.  Schematic diagram of the influence of shield tunneling on longitudinal deformation of existing tunnels

    图  4  Timoshenko梁简化模型

    Figure  4.  Simplified model of Timoshenko beam

    图  5  等效抗弯刚度的计算图示

    Figure  5.  Diagram of equivalent flexural rigidity calculation

    图  6  外滩通道上跨2号线隧道示意图

    Figure  6.  Schematic diagram of the Bund Passage up-crossing Line-2 tunnel

    图  7  实测数据与本文解析解对比

    Figure  7.  Comparison between measured tunnel displacement and analytical solutions

    图  8  上海地铁8号线上跨2号线示意图

    Figure  8.  Schematic diagram of Shanghai Metro Line 8 up-crossing Line 2

    图  9  2号线监测数据与本文解析解对比图

    Figure  9.  Comparison between Line-2 measured tunnel displacement and analytical solutions

    图  10  Timoshenko梁与Euler-Bernoulli梁模型对隧道变形及内力影响的对比

    Figure  10.  Calculation of tunnel longitudinal deformation and internal force by Timoshenko beam and Euler-Bernoulli beam

    图  11  等效剪切刚度对既有管片错台量的影响

    Figure  11.  The effect of equivalent shear stiffness on the dislocation of segmen

    图  12  地层损失率对隧道变形及内力影响

    Figure  12.  Effects of ground volume loss ratio on dislocations and internal forces of tunnel

    表  1  现场地层力学参数

    Table  1.   Soil parameters of the site

    土层 含水率ω/% 重度/(kN·m-1) 孔隙比e0 塑性指数Ip 液性指数IL 压缩系数α0.1-0.2/MPa-1 压缩模量Es0.1-0.2/MPa 十字板剪切试验cu/kPa
    江滩土 34.7 18 0.986 14.5 1.08 0.29 6.85 47.6
    灰色泥质黏土 49.4 16.9 1.386 21.3 1.25 0.99 2.41 23.2
    灰色黏土 36.7 17.8 1.065 18.0 0.85 0.54 3.85 50.1
    灰色粉质黏土 34 17.9 1.005 15.5 0.88 0.41 4.94 82.3
    下载: 导出CSV

    表  2  2号线隧道管片参数

    Table  2.   Line-2 tunnel segment parameters

    隧道参数 数值
    外径D/m 6.2
    内径Di/m 5.5
    管片厚度t/m 0.35
    管片长度/m 1.2
    弹性模量/MPa 3.45
    环向螺栓数n 17
    螺栓直径/m 30
    螺栓长度lb/mm 400
    螺栓弹性模量Eb/(105 MPa) 2.06
    下载: 导出CSV

    表  3  现场地层力学参数

    Table  3.   Soil parameters of the site

    土层名称 含水率ω/% 重度/(kN·m-1) 孔隙比e0 液性指数IL 塑性指数Ip 压缩系数α0.1-0.2/MPa-1 压缩模量Es0.1-0.2/MPa
    粉质黏土 38.7 2.73 1.07 36.7 20.9 0.50 4.16
    泥质粉质黏土 56.0 2.74 1.54 37.5 19.8 1.50 1.71
    泥质黏土 65.1 2.76 1.81 45.0 21.8 1.69 1.68
    粉质黏土 33.5 2.72 0.97 33.1 19.3 0.50 3.98
    下载: 导出CSV
  • [1] 杨志勇, 江玉生, 颜治国, 等. 盾构下穿地铁运营隧道沉降规律分析[J]. 西安科技大学学报, 2014, 34(3): 268-273. doi: 10.3969/j.issn.1672-9315.2014.03.004

    Yang Zhiyong, Jiang Yusheng, Yan Zhiguo, et al. Analysis on settlement regularity when shields underneath pass subway tunnels[J]. Journal of Xi'an University of Science and Technology, 2014, 34(3): 268-273. doi: 10.3969/j.issn.1672-9315.2014.03.004
    [2] 李涛, 李冬晓, 范开全, 等. 超大断面地下空间开挖对邻近桩基位移影响研究[J]. 矿业科学学报, 2017, 2(6): 529-538. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201706003.htm

    Li Tao, Li Dongxiao, Fan Kaiquan, et al. The study of pile foundation displacement caused by adjacent excavation of underground super large space[J]. Journal of Mining Science and Technology, 2017, 2(6): 529-538. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201706003.htm
    [3] 姜忻良, 赵志民, 李园. 天津地铁盾构施工对邻近工程设施影响的动态模拟[J]. 天津大学学报, 2006, 39(2): 188-193. doi: 10.3969/j.issn.0493-2137.2006.02.012

    Jiang Xinliang, Zhao Zhimin, Li Yuan. Dynamic simulation of the effects of shield tunneling in Tianjin subway project on neighboring job facilities[J]. Journal of Tianjin University, 2006, 39(2): 188-193. doi: 10.3969/j.issn.0493-2137.2006.02.012
    [4] 张晋勋, 江华, 程晋国, 等. 盾构开挖引起的地层位移空间分布预测模型[J]. 铁道工程学报, 2017, 34(11): 88-94. doi: 10.3969/j.issn.1006-2106.2017.11.017

    Zhang Jinxun, Jiang Hua, Cheng Jinguo, et al. Spatial distribution prediction method of ground displacement induced by shield tunneling[J]. Journal of Railway Engineering Society, 2017, 34(11): 88-94. doi: 10.3969/j.issn.1006-2106.2017.11.017
    [5] 陶龙光, 刘波, 丁城刚, 等. 盾构过地铁站施工对地表沉降影响的数值模拟[J]. 中国矿业大学学报, 2003, 32(3): 236-240. doi: 10.3321/j.issn:1000-1964.2003.03.006

    Tao Longguang, Liu Bo, Ding Chenggang, et al. Numerical simulation of ground settlement due to constructing metro-station based on shield tunneling[J]. Journal of China University of Mining & Technology, 2003, 32(3): 236-240. doi: 10.3321/j.issn:1000-1964.2003.03.006
    [6] 张桓, 张子新. 盾构隧道开挖引起既有管线的竖向变形[J]. 同济大学学报: 自然科学版, 2013, 41(8): 1172-1178. doi: 10.3969/j.issn.0253-374x.2013.08.009

    Zhang Huan, Zhang Zixin. Vertical deflection of existing pipeline due to shield tunnelling[J]. Journal of Tongji University: Natural Science, 2013, 41(8): 1172-1178. doi: 10.3969/j.issn.0253-374x.2013.08.009
    [7] 刘波, 陶龙光, 叶圣国, 等. 地铁隧道施工引起地层变形的反分析预测系统[J]. 中国矿业大学学报, 2004, 33(3): 277-282. doi: 10.3321/j.issn:1000-1964.2004.03.010

    Liu Bo, Tao Longguang, Ye Shengguo, et al. Back analysis prediction system for ground deformation due to subway tunneling excavation[J]. Journal of China University of Mining & Technology, 2004, 33(3): 277-282. doi: 10.3321/j.issn:1000-1964.2004.03.010
    [8] 刘波, 杨伟红, 张功, 等. 基于隧道不均匀变形的地表沉降随机介质理论预测模型[J]. 岩石力学与工程学报, 2018, 37(8): 1943-1952. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808017.htm

    Liu Bo, Yang Weihong, Zhang Gong, et al. A prediction model based on stochastic medium theory for ground surface settlement induced by non-uniform tunnel deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1943-1952. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808017.htm
    [9] Cooper M L, Chapman D N, Rogers C D F, et al. Movements in the piccadilly line tunnels due to the heathrow express construction[J]. Géotechnique, 2002, 52(4): 243-257. doi: 10.1680/geot.2002.52.4.243
    [10] Mohamad H, Bennett P J, Soga K, et al. Behaviour of an old masonry tunnel due to tunnelling-induced ground settlement[J]. Géotechnique, 2010, 60(12): 927-938. doi: 10.1680/geot.8.P.074
    [11] Asano T, Ishihara M, Kiyota Y, et al. An observational excavation control method for adjacent mountain tunnels[J]. Tunnelling and Underground Space Technology, 2003, 18(2/3): 291-301. http://www.sciencedirect.com/science/article/pii/S0886779803000439
    [12] Huang A J, Wang D Y, Wang Z X.Rebound effects of running tunnels underneath an excavation[J]. Tunnelling and Underground Space Technology, 2006, 21(3/4): 399. http://www.sciencedirect.com/science/article/pii/S0886779805002804
    [13] Kim S H, Burd H J, Milligan G W E.Model testing of closely spaced tunnels in clay[J]. Geotechnique, 1998, 48(3): 375-388. doi: 10.1680/geot.1998.48.3.375
    [14] Byun G W, Kim D G, Lee S.Behavior of the ground in rectangularly crossed area due to tunnel excavation under the existing tunnel[J]. Tunnelling and Underground Space Technology, 2006, 21(3): 361. http://www.sciencedirect.com/science/article/pii/s088677980500249x
    [15] 黄德中, 马险峰, 王俊淞, 等. 软土地区盾构上穿越既有隧道的离心模拟研究[J]. 岩土工程学报, 2012, 34(3): 520-527. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203025.htm

    Huang Dezhong, Ma Xianfeng, Wang Junsong, et al. Centrifuge modelling of effects of shield tunnels on existing tunnels in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 520-527. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203025.htm
    [16] Ng C W W, Lu H, Peng S Y.Three-dimensional centrifuge modelling of the effects of twin tunnelling on an existing pile[J]. Tunnelling and Underground Space Technology, 2013, 35: 189-199. doi: 10.1016/j.tust.2012.07.008
    [17] Ghaboussi J, Hansmire W H, Parker H W, et al. Finite element simulation of tunneling over subways[J]. Géotechnique, 1983, 109(3): 318-334. http://www.onacademic.com/detail/journal_1000033914956810_a7c8.html
    [18] Li P, Du S J, Ma X F, et al. Centrifuge investigation into the effect of new shield tunnelling on an existing underlying large-diameter tunnel[J]. Tunnelling and Underground Space Technology, 2014, 42: 59-66. doi: 10.1016/j.tust.2014.02.004
    [19] Do N A, Dias D, Oreste P, et al. Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground[J]. Tunnelling and Underground Space Technology, 2014, 42: 40-51. doi: 10.1016/j.tust.2014.02.001
    [20] 刘波, 陶龙光, 丁城刚, 等. 地铁双隧道施工诱发地表沉降预测研究与应用[J]. 中国矿业大学学报, 2006, 35(3): 356-361. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200603013.htm

    Liu Bo, Tao Longguang, Ding Chenggang, et al. Prediction for ground subsidence induced by subway double tube tunneling[J]. Journal of China University of Mining & Technology, 2006, 35(3): 356-361. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200603013.htm
    [21] Liu H Y, Small J C, Carter J P.Full 3D modelling for effects of tunnelling on existing support systems in the Sydney region[J]. Tunnelling and Underground Space Technology, 2008, 23(4): 399-420. doi: 10.1016/j.tust.2007.06.009
    [22] 刘波, 陶龙光. 地铁隧道施工引起地层变形的反分析预测系统研究[J]. 中国矿业大学学报, 2004, 33(3): 277-282. doi: 10.3321/j.issn:1000-1964.2004.03.010

    Liu Bo, Tao Longguang. Back analysis prediction system for g round deformation due to subway tunneling excavation[J]. Journal of China University of Mining & Technology, 2004, 33(3): 277-282. doi: 10.3321/j.issn:1000-1964.2004.03.010
    [23] 侯公羽, 刘宏伟, 李晶晶, 等. 基于开挖卸荷效应的地铁隧道施工过程数值分析[J]. 岩石力学与工程学报, 2013, 32(S1): 2915-2924. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1043.htm

    Hou Gongyu, Liu Hongwei, Li Jingjing, et al. Numerical analysis of subway tunnel construction process based on excavation unloading effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2915-2924. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1043.htm
    [24] Timoshenko S P.On the correction for shear of the differential equation for transverse vibration of prismatic bars[J]. Philosphical Magazine, 1921, 41(2): 744-746. doi: 10.1080/14786442108636264
    [25] Loganathan N, Poulos H G.Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg15/ref15&dbid=16&doi=10.1139%2ft11-067&key=10.1061%2f(asce)1090-0241(1998)124%3a9(846)
    [26] Liao S M, Liu J H, Wang R L, et al. Shield tunneling and environment protection in Shanghai soft ground[J]. Tunnelling and Underground Space Technology, 2009, 24(4): 454-465. http://www.sciencedirect.com/science/article/pii/S088677980800120X
    [27] Shiba Y, Kawashima K, Obinata N, et al. An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses[J]. Doboku Gakkai Ronbunshu, 1988, 1988(398): 319-327. http://ci.nii.ac.jp/naid/130003799680
    [28] Vesic A B.Bending of beams resting on isotropic elastic solid[J]. Journal of the Engineering Mechanics Division, 1961, 87(EM2, Part 1): 35-53.
    [29] Attewell P B, Yeates J, Selby A.Soil movements induced by tunnelling and their effects on pipelines and structures[M]. London: Blackie and Son Ltd, 1986: 128-132.
    [30] 黄德中, 马元. 上海外滩通道超大直径土压平衡盾构施工技术[J]. 地下工程与隧道, 2010(1): 15-17, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC201001007.htm

    Huang Dezhong, Ma Yuan. Extra-large diameter earth pressure balance shield construction technology for Shanghai bund passage project[J]. Underground Engineering and Tunnels, 2010(1): 15-17, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC201001007.htm
    [31] 戴仕敏. 土压平衡盾构上穿运营中地铁隧道上浮控制[J]. 地下空间与工程学报, 2011, 7(S1): 1459-1464. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2011S1034.htm

    Dai Shimin. Anti-floating control of running subway for above-crossing EPB shield[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(S1): 1459-1464. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2011S1034.htm
    [32] 陈亮, 黄宏伟, 王如路. 近距离上部穿越对原有隧道沉降的影响分析[J]. 土木工程学报, 2006, 39(6): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200606015.htm

    Chen Liang, Huang Hongwei, Wang Rulu. Analysis of the observed longitudinal settlement of a tunnel caused by an adjacent shield tunneling on top[J]. China Civil Engineering Journal, 2006, 39(6): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200606015.htm
    [33] 吴昌胜, 朱志铎. 不同隧道施工方法引起地层损失率的统计分析[J]. 浙江大学学报: 工学版, 2019, 53(1): 19-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201901003.htm

    Wu Changsheng, Zhu Zhiduo. Statistical analysis of ground loss ratio caused by different tunnel construction methods in China[J]. Journal of Zhejiang University: Engineering Science, 2019, 53(1): 19-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201901003.htm
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  364
  • HTML全文浏览量:  225
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-02
  • 修回日期:  2020-06-08
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回