留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿乏风瓦斯变压吸附技术操作条件优化试验研究

竹涛 刘恩彤 王艳霞 马名烽 李冉冉

竹涛, 刘恩彤, 王艳霞, 马名烽, 李冉冉. 煤矿乏风瓦斯变压吸附技术操作条件优化试验研究[J]. 矿业科学学报, 2016, 1(2): 196-202.
引用本文: 竹涛, 刘恩彤, 王艳霞, 马名烽, 李冉冉. 煤矿乏风瓦斯变压吸附技术操作条件优化试验研究[J]. 矿业科学学报, 2016, 1(2): 196-202.
Zhu Tao, Liu Entong, Wang Yanxia, Ma Mingfeng, Li Ranran. Experimental study on working parameters optimization of vacuum pressure swing adsorption technology for ventilation air methane in coal mine[J]. Journal of Mining Science and Technology, 2016, 1(2): 196-202.
Citation: Zhu Tao, Liu Entong, Wang Yanxia, Ma Mingfeng, Li Ranran. Experimental study on working parameters optimization of vacuum pressure swing adsorption technology for ventilation air methane in coal mine[J]. Journal of Mining Science and Technology, 2016, 1(2): 196-202.

煤矿乏风瓦斯变压吸附技术操作条件优化试验研究

基金项目: 新世纪优秀人才支持计划(NCET120967)
国家自然科学基金(51108453)
北京市优秀人才培养计划(2012ZG81)
煤炭资源与安全开采国家重点实验室开放基金(SKLCRSM16KFA04)
中央高校基本科研业务费专项资金(2009QH03)
详细信息
    作者简介:

    竹涛(1979—),男,山西临猗人,教授,博士生导师,主要从事大气污染控制方面的研究。

  • 中图分类号: TD713

Experimental study on working parameters optimization of vacuum pressure swing adsorption technology for ventilation air methane in coal mine

  • 摘要: 为实现煤矿乏风瓦斯资源化利用,采用变压吸附技术,对变压吸附系统的可变试验参数进行了单因素试验及正交试验,分析了解吸压力、原料气浓度和吸附塔高径比等对甲烷富集效果的影响。试验结果表明:解吸压力越低,解吸气甲烷体积分数越高;原料气浓度越高,提升比率越小;不同因素对试验结果的影响,按重要程度由大到小依次为解吸压力、原料气甲烷体积分数、吸附塔高径比;最佳操作条件为:解吸压力取最小值 0 kPa,原料气甲烷体积分数取0.1%,吸附塔高径比取10.33,提升比率的最大值为1.68。
  • [1] 杨礼荣,竹涛,高庆先. 我国典型行业非二氧化碳类温室气体减排技术及对策[M]. 北京: 中国环境出版社, 2014.
    [2] 王长元,王正辉,陈孝通. 低浓度煤层气变压吸附浓缩技术研究现状[J]. 矿业安全与环保, 2008, 35(6): 70-73. Wang Changyuan, Wang Zhenghui, Chen Xiaotong. Present research situation of lowconcentration gas purification with PSA technology[J]. Mining Safety & Environmental Protection, 2008, 35(6): 70-73.
    [3] 刘文革. 中国煤矿区煤层气CDM项目的开发现状与潜力[J]. 中国能源, 2006,28(8): 40-42.Liu Wen ge. Development status and potential of CDM project of coal bed methane in China coal mine[J]. China Energy, 2006, 28(8): 40-42.
    [4] 姜文曼,刘锡明,韩永辉,等. 煤矿乏风甲烷增浓技术研究进展[J]. 广州化工, 2015, 43(1): 13-15.Jiang Wenman, Liu Ximing, Han Yonghui, et al. Research progress on the technology of marsh gas concentrating for VAM[J]. Guangzhou Chemical Industry, 2015, 43(1): 13-15.
    [5] 陶鹏万,王晓东,黄建彬. 低温法富集煤层气中的甲烷[J]. 天然气化工, 2005, 30(4): 43-46.Tao Pengwan, Wang Xiaodong, Huang Jianbin. Separation of methane from coal seam gas by cryogenic distillation[J]. Gas Chemical Industry, 2005, 30(4): 43-46.
    [6] 吴剑峰,孙兆虎,公茂琼. 从含氧煤层气中安全分离提纯甲烷的工艺方法[J]. 天然气工业, 2009, 29(2): 113-116.Wu Jianfeng, Sun Zhaohu, Gong Maoqiong. Security technology of methane recovery from coalbed gas with oxygen[J]. Gas Industry, 2009, 29(2): 113-116.
    [7] Huang Y, Paul D R. Effect of film thickness on the gas permeation characteristics of glassy polymer membranes[J]. Industrial & Engineering Chemistry Research, 2007, 46(8): 2342-2347.
    [8] Asad J, Michael P H, Varuntida V, et al. Solubility based gas separation with oligomer modified inorganic membranes[J]. Journal of Membrane Science, 2001, 187(1/2): 141-150.
    [9] Lokhandwala K. Membrane augmented cryogenic methane/nitrogen separation: US, 5647227[P] 1997-07-15.
    [10] Bhide B D, Voskericyan A, Stern S A. Hybrid processes for the removal of acid gases from natural gas[J]. Journal of Membrane Science, 1998, 140(1): 27-49.
    [11] Mehra Y R. Utilizing the mehra process for processing and BTU upgrading of nitrogen rich natural gas streams:US, 4623371[P] 1986-11-18.
    [12] Dwayne T F, Walter C B, David J E, et al. Liquid absorbent solutions for separating nitrogen from natural gas:US, 6136222[P] 2000-10-24.
    [13] 吴强,张保勇,孙登林,等. 利用水合原理分离矿井瓦斯实验[J]. 煤炭学报, 2009, 34(3): 361-365.Wu Qiang, Zhang Baoyong, Sun Denglin, et al. Experimental on mine gas separation based on hydration mechanism[J]. Journal of China Coal Society, 2009, 34(3): 361-365.
    [14] Li Xiaosen,Cai Jing,Chen Zhaoyang, et al. Hydrate based methane separation from the drainage coal bed methane with tetrahydrofuran solution in the presence of sodium dodecyl sulfate[J]. Energy & Fuels, 2012, 26 (2): 1144-1151.
    [15] Sun Qiang, Guo Xuqiang, Liu Aixian, et al. Experimental study on the separation of CH4 and N2 via hydrate formation [J]. Industrial & Engineering Chemistry Research, 2011, 50 (4): 2284-2288.
    [16] 辜敏,鲜学福. 矿井抽放煤层气中甲烷的变压吸附提浓[J]. 重庆大学学报, 2007, 30(4): 29-33.
    Gu Min, Xian Xuefu. Pressure sweep adsorption processes for the concentration of methane from coal bed gas extracted[J]. Journal of Chongqing University, 2007, 30(4): 29-33.
    [17] Zhou Li, Guo Wencai, Zhou Yaping. A feasibility study of separating CH4/N2 by adsorption[J]. Chinese Journal of Chemical Engineering, 2002, 10(5): 555-561.
    [18] 竹涛,夏妮,和娴娴,等. 煤矿瓦斯气瓦斯富集分离技术研究进展与应用[J]. 洁净煤技术, 2015, 21(6): 95-100.Zhu Tao, Xia Ni, He Xianxian, et al. Research and application for enrichment and separation technology of ventilation air methane in coal mine[J]. Clean Coal Technology, 2015, 21(6): 95-100.
    [19] Kouvelos E, Kesore I C, Steriotis T, et al. High pressure N2/CH4 adsorption measurements in elinoptilolites[J]. Microporous and Mesoporous Materials, 2007, 99(1/2): 106-111.
    [20] 竹涛,陈锐,和娴娴,等. 变压吸附法富集分离乏风瓦斯的实验研究[J]. 煤矿安全, 2015, 46(9): 1-4.Zhu Tao, Chen Rui, He Xianxian, et al. Experimental study on separation and enrichment of ventilation air methane by vacuum pressure swing adsorption[J]. Safety in Coal Mines, 2015, 46(9): 1-4.
    [21] 赵选民. 试验设计方法[M]. 北京: 科学出版社, 2006.
  • 加载中
计量
  • 文章访问数:  921
  • HTML全文浏览量:  101
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-25
  • 刊出日期:  2016-10-29

目录

    /

    返回文章
    返回