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Abstract; To explore the brittleness and its anisotropy of deep coalbed methane reservoir, the effects of
parameters such as the total content of organic matter and clay and the preferred orientation degree, e-
quivalent porosity and pore aspect ratio on the brittleness of deep coalbed methane reservoirs were ana-
lyzed. Firstly, 20 primary structural coal samples from No. 8 coal seam of Taiyuan Group were collected
to carry out microscopic observation, physical property experiments and ultrasonic velocity experiments.
Then an anisotropic rock physics model of the deep coalbed methane reservoir was constructed based on
the experiment results and microscopic observation. Finally, a two-dimensional brittle rock physics
template is established. The results show that the brittleness of coal samples has obvious direction de-

pendence, and the brittleness of parallel and perpendicular lamination directions are correlated. The
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difference of Young’s modulus between parallel and perpendicular laminations is positively correlated

with the difference of velocity, and the anisotropy of Poisson’s ratio and brittleness index is negatively

correlated with the velocity anisotropy parameter. The validation of experimental data shows that the

petrophysical model constructed in the paper can effectively portray the influence of coal components

and structure on the brittleness characteristics of the reservoir.

Key words:deep; coal; brittleness; ultrasonic velocity; rock physics modeling
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Table 1 Basic petrophysical properties of coal samples
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PC-1 1. 46 1. 05 2.9 89. 4 8. 1 1.7 0.8 0

pPC-2 1.49 1.13 4.4 83.2 7.8 5.4 2.2 0.9
PC-3 1. 47 0.92 2.6 81. 1 9.9 5.1 3.1 0.5
PC-4 1.47 1.15 2.9 82.2 9.3 6.1 1.9 0.3
PC-5 1.48 1.07 3.6 81.7 5 6.1 5.3 1.7
PC-6 1.45 1. 14 4.9 85.5 7.5 3.3 2.1 0.7
PC-7 1.5 1.13 3.7 87.5 4.1 3.6 2.4 1.8
PC-8 1.47 1.07 4.6 81. 1 7.9 5.1 3.1 2.1
PC-9 1.48 1. 05 3.9 86. 1 9.1 2.3 1.6 0.6
PC-10 1.43 1.07 3.1 80. 4 9.8 6.9 1.8 1.1
PC-11 1. 48 1.09 4.5 84.1 6.7 3.5 4.4 1.2
PC-12 1.43 1.03 4.4 80. 4 9.8 6.9 1.8 1.1
PC-13 1.49 1.03 3.9 87.1 7.1 2.3 1.6 1.6
PC-14 1.51 1. 16 3.2 79.5 8.1 5.6 3.4 2.8
PC-15 1.45 0. 89 2.6 86.4 9.8 1.9 1.2 0.1
PC-16 1.44 1. 14 4.2 85.2 7.4 4.4 2.1 0.7
PC-17 1.44 1. 14 5.0 84.1 7.4 4.3 2.2 1.7
PC-18 1.49 1. 06 4.5 85.5 6.1 3.6 2.4 1.9
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Fig. 3 Ultrasonic velocity of coal samples as a function of porosity
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Fig. 6 Coal sample Young’s Modulus, Poisson’s Ratio and Brittleness Index full angle characterization
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Fig.7 Work flow of anisotropic rock physics modeling for deep coalbed methane reservoir
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