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Abstract; Random noise is one of the common background noises in seismic data, and its attenuation
will directly affect the signal-to-noise ratio of seismic data, which is of great significance to improve the
quality of seismic data. Low-rank approximation technique is a commonly used method to suppress ran-
dom noise of seismic data. It converts frequency spatial domain data into the form of Hanke matrix, and
uses singular value decomposition technique to reconstruct data by retaining large singular values, so as
to achieve the purpose of rank reduction and suppress random noise. The method takes advantage of the
low-rank nature of noiseless seismic data, which can be destroyed in the presence of random noise.

However, traditional singular value decomposition technology has low computational efficiency, and
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seismic data generally consist of a large amount of datasets, so traditional singular value decomposition
technology will inevitably lead to a large increase in time cost. In order to improve the efficiency of ran-
dom noise suppression, a new singular value decomposition technique based on compressed sensing the-
ory is proposed. The sparse representation of data is considered in the calculation of singular values,
and the sparse representation of data is used to approximate the solution of high-dimensional singular
vectors and singular values, so as to improve the accuracy and computational efficiency of singular val-
ue decomposition. Compressed sensing theory makes full use of data sparsity, avoids direct processing
of original high-dimensional data, and theoretically has high computational efficiency. Three-dimen-
sional synthetic seismic records and field data examples are used to verify the validity and practicability
of the proposed method, and comparisons with traditional and random singular value decomposition
techniques are performed. The results show that the improved low-rank approximation technique can ef-
fectively suppress random noise in seismic data, and the effective signal can be enhanced and highlight-
ed. Compared with traditional and random singular value decomposition, the compressed singular value
decomposition technique has higher computational efficiency and can greatly save time cost. Low-rank
approximation technology based on compressed singular value decomposition has better performance
than other methods in random noise suppression and can further improve the signal-to-noise ratio.

Key words: low-rank approximation; singular-value decomposition; compressed sensing; random noise
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