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摘　 要:随机噪声是地震数据处理中常见的干扰之一。 传统的随机噪声压制方法采用的是奇异

值分解技术,但是其计算效率较低,难以适应大规模地震数据处理。 为了提高随机噪声压制效

率,提出一种基于压缩奇异值分解的随机噪声压制技术。 该技术在计算奇异值时首先基于压缩

感知理论对原始数据进行稀疏变换,然后将变换后的结果用于近似求解高维左右奇异向量和奇

异值,避免对原始高维数据的直接处理,提高奇异值分解的准确性和计算效率。 基于三维合成地

震记录和实际数据对该技术的有效性和实用性进行验证,并与采用传统奇异值分解、随机奇异值

分解的技术进行对比。 结果表明:该技术能够有效压制地震数据中的随机噪声,同时有效信号得

以增强突显;相对于传统和随机奇异值分解,压缩奇异值分解技术具有更高的计算效率,可大幅

节约时间成本,并进一步提高信噪比。
关键词:低秩近似;奇异值分解;压缩感知;随机噪声
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Abstract:Random
 

noise
 

is
 

one
 

of
 

the
 

common
 

background
 

noises
 

in
 

seismic
 

data,
 

and
 

its
 

attenuation
 

will
 

directly
 

affect
 

the
 

signal-to-noise
 

ratio
 

of
 

seismic
 

data,
 

which
 

is
 

of
 

great
 

significance
 

to
 

improve
 

the
 

quality
 

of
 

seismic
 

data.
 

Low-rank
 

approximation
 

technique
 

is
 

a
 

commonly
 

used
 

method
 

to
 

suppress
 

ran-
dom

 

noise
 

of
 

seismic
 

data.
 

It
 

converts
 

frequency
 

spatial
 

domain
 

data
 

into
 

the
 

form
 

of
 

Hanke
 

matrix,
 

and
 

uses
 

singular
 

value
 

decomposition
 

technique
 

to
 

reconstruct
 

data
 

by
 

retaining
 

large
 

singular
 

values,
 

so
 

as
 

to
 

achieve
 

the
 

purpose
 

of
 

rank
 

reduction
 

and
 

suppress
 

random
 

noise.
 

The
 

method
 

takes
 

advantage
 

of
 

the
 

low-rank
 

nature
 

of
 

noiseless
 

seismic
 

data,
 

which
 

can
 

be
 

destroyed
 

in
 

the
 

presence
 

of
 

random
 

noise.
 

However,
 

traditional
 

singular
 

value
 

decomposition
 

technology
 

has
 

low
 

computational
 

efficiency,
 

and
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seismic
 

data
 

generally
 

consist
 

of
 

a
 

large
 

amount
 

of
 

datasets,
 

so
 

traditional
 

singular
 

value
 

decomposition
 

technology
 

will
 

inevitably
 

lead
 

to
 

a
 

large
 

increase
 

in
 

time
 

cost.
 

In
 

order
 

to
 

improve
 

the
 

efficiency
 

of
 

ran-
dom

 

noise
 

suppression,
 

a
 

new
 

singular
 

value
 

decomposition
 

technique
 

based
 

on
 

compressed
 

sensing
 

the-
ory

 

is
 

proposed.
 

The
 

sparse
 

representation
 

of
 

data
 

is
 

considered
 

in
 

the
 

calculation
 

of
 

singular
 

values,
 

and
 

the
 

sparse
 

representation
 

of
 

data
 

is
 

used
 

to
 

approximate
 

the
 

solution
 

of
 

high-dimensional
 

singular
 

vectors
 

and
 

singular
 

values,
 

so
 

as
 

to
 

improve
 

the
 

accuracy
 

and
 

computational
 

efficiency
 

of
 

singular
 

val-
ue

 

decomposition.
 

Compressed
 

sensing
 

theory
 

makes
 

full
 

use
 

of
 

data
 

sparsity,
 

avoids
 

direct
 

processing
 

of
 

original
 

high-dimensional
 

data,
 

and
 

theoretically
 

has
 

high
 

computational
 

efficiency.
 

Three-dimen-
sional

 

synthetic
 

seismic
 

records
 

and
 

field
 

data
 

examples
 

are
 

used
 

to
 

verify
 

the
 

validity
 

and
 

practicability
 

of
 

the
 

proposed
 

method,
 

and
 

comparisons
 

with
 

traditional
 

and
 

random
 

singular
 

value
 

decomposition
 

techniques
 

are
 

performed.
 

The
 

results
 

show
 

that
 

the
 

improved
 

low-rank
 

approximation
 

technique
 

can
 

ef-
fectively

 

suppress
 

random
 

noise
 

in
 

seismic
 

data,
 

and
 

the
 

effective
 

signal
 

can
 

be
 

enhanced
 

and
 

highlight-
ed.

 

Compared
 

with
 

traditional
 

and
 

random
 

singular
 

value
 

decomposition,
 

the
 

compressed
 

singular
 

value
 

decomposition
 

technique
 

has
 

higher
 

computational
 

efficiency
 

and
 

can
 

greatly
 

save
 

time
 

cost.
 

Low-rank
 

approximation
 

technology
 

based
 

on
 

compressed
 

singular
 

value
 

decomposition
 

has
 

better
 

performance
 

than
 

other
 

methods
 

in
 

random
 

noise
 

suppression
 

and
 

can
 

further
 

improve
 

the
 

signal-to-noise
 

ratio.
 

Key
 

words:
 

low-rank
 

approximation;
 

singular-value
 

decomposition;
 

compressed
 

sensing;
 

random
 

noise

　 　 在地震数据采集中,人类活动和勘探设备等产

生的随机噪声不可避免,而随机噪声的存在会掩盖

地震数据真实振幅信息,降低数据质量,从而影响

数据的信噪比。 因此,随机噪声压制是地震数据处

理和成像流程的关键步骤之一,是地震数据后续高

质量处理、解释与反演的重要前提,如 AVO 反演、
逆时偏移成像、全波形反演、构造解释等[1-2] 。

为了压制地震数据中的随机噪声,专家学者们

发展了一系列新的算法,以提高信噪比。 这些随机

噪声压制方法可大概分为两类。
第一类为基于变换类的地震数据去噪方法,主

要是利用地震数据的稀疏表示性质,选定一组固定

变换基作为稀疏变换算子,将含有噪声的地震数据

进行稀疏变换。 由于噪声具有无规则性,在变换到

稀疏域后依然不具有稀疏性,因此在稀疏域可实现

地震信号和随机噪声的有效分离。 典型的稀疏变

换包括傅里叶变换[3-4] 、曲波变换[5-7] 、 Seislet 变

换[8-9] 、Shearlet 变换[10-11] 、拉东变换[12-13] 、小波变

换[14-15]等。
第二类方法是利用地震信号自身的特点,不经

过稀疏变换直接将信号分离出来,主要有数据分解

和低秩近似 2 种方法。 数据分解是一种常用的信

号噪声分离方法,利用信号和噪声的不同性质,将
信号和噪声分别分解到不同的成分中。 常见的数

据分解算法,包括经验模态分解[16-17] 、变分模态分

解[18-19] 、复变分模态分解[20-21] 、奇异值分解[22-23]

等。 低秩近似方法是利用地震数据的低秩性质进

行噪声压制[24] 。 汉克尔矩阵在表达低秩矩阵方面

具有优势,在应用中一般将频率切片地震数据转化

为汉克尔矩阵形式[25] ,转化后的汉克尔矩阵的秩

与地震数据中不同倾角的同相轴个数密切相关,而
噪声的存在会导致汉克尔矩阵的秩增加。 因此,通
过降低矩阵的秩可达到衰减噪声的目的。 传统低

秩近似中通常采用奇异值分解对汉克尔矩阵进行

分解,通过保留较大奇异值来恢复有效信号,但是

其算法计算效率较低,所需时间成本较高,难以适

用于大规模地震数据的处理。
在低秩近似技术的基础上,基于压缩感知理论

提出一种新的奇异值分解算法,首先对原始数据进

行稀疏变换,然后将变换后的结果用于近似求解高

维左右奇异向量和奇异值,提高奇异值分解的准确

性和计算效率,并通过三维数值模型和实际数据对

所提方法的有效性进行验证。

1　 方法原理

由线性同相轴构成的地震数据在数学形式上

具有低秩的性质,可用于地震数据的高精度处理与

解释。 低秩近似技术就是以地震数据的低秩假设

为前提,利用地震数据含噪前后秩的差异,通过低

秩近似恢复原始有效信号,压制噪声。 汉克尔矩阵

在表达数据低秩性质方面具有优势,因此低秩近似

的第一步是利用傅里叶变换将地震数据从时间域

转化到频率域。 对于三维数据 D(x,
 

y,
 

t),其在空

间和时间方向上的采样点数分别为 Nx,Ny,Nt(x
 

=
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1,
 

…,
 

Nx,y
 

=
 

1,
 

…,
 

Ny,t
 

=
 

1,
 

…,
 

Nt),其频率

域可以表示为 D(x,
 

y,
 

f) ( f
 

=
 

1,
 

…,
 

Nf)。 单一

频率切片的地震数据可以表示为

D( f0) =

D(1,1) D(1,1) … D(1,Nx)
D(2,1) D(2,2) … D(2,Nx)

︙ ︙ ⋱ ︙
D(Ny,1) D(Ny,2) … D(Ny,Nx)

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

(1)
为了避免标记混淆,省略频率符号 f0。 对于矩

阵 D 的每一行元素构建相应的汉克尔矩阵 Ri:

Ri =

D( i,1) D( i,2) … D( i,Kx)
D( i,2) D( i,3) … D( i,Kx + 1)

︙ ︙ ⋱ ︙
D( i,Lx) D( i,Lx + 1) … D( i,Nx)

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

(2)
式中,Lx 和 Ly 为常数。

为使该汉克尔矩阵近似为方阵,一般取 Lx
 =

 

INT(Nx / 2)
 

+
 

1,Kx
 =

 

Nx
 -

 

Lx
 +

 

1,INT(·)表示取整

符号。 y 方向的汉克尔矩阵由矩阵 Ri 构成,其表

达如下:

M =

R1 R2 … RKy

R2 R3 … RKy+1

︙ ︙ ⋱ ︙
RLy

RLy+1 … RNy

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

(3)

式中,参数 Ly 和 Ky 是用于令矩阵M近似为方阵的常

数,一般取 Ly
 =

 

INT(Ny / 2)
 

+
 

1,Ky
 =

 

Ny-Ly+1。
地震数据可看作由有效信号和噪声构成,当地

震数据仅包含有效信号时,其相应的汉克尔矩阵式

(3)是非满秩的,具有低秩表现形式;而当地震数

据被噪声污染后,由于噪声的无规则性,相应的汉

克尔矩阵不再具有低秩形式,具有满秩性质[26] 。
为了压制噪声,可以考虑对汉克尔矩阵进行奇异值

分解处理,通过秩减方式恢复地震有效信号。 汉克

尔矩阵的奇异值分解可表示为

M = A∑B = [A1 　 A2]
∑ 1

0

0 ∑ 2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(B1) H

(B2) H

é

ë

ê
êê

ù

û

ú
úú

(4)

式中, ∑、∑ 1
和∑ 2

为对角矩阵,分别由较大奇

异值和较小奇异值构成;矩阵 A、A1、A2、B、B1、B2

分别为相应的左右奇异向量;符号(·) H 表示矩阵

的共轭。
由奇异值分解的内涵可知,分解后的奇异值对

应于原始数据中能量较强且具有良好空间相关性

的有效信号,故较大的奇异值对应于原始有效信号

成分;而随机噪声具有无规则性,其空间相关性交

差,故其对应的奇异值较小。
为了消除地震数据中的随机噪声,可通过截断

奇异值分解算法,舍弃较小的奇异值和相应奇异向

量,保留较大的奇异值和相应的奇异向量进行数据

重构,达到恢复信号的目的。 基于截断奇异值分

解,恢复的汉克尔矩阵 􀮃M 可表示为
􀮃M

 

=
 

A1∑
 

1B1
H (5)

为了满足汉克尔矩阵沿主对角线对称的性质,
恢复后的矩阵需要沿反对角线进行均值化处

理[27] 。 通过汉克尔矩阵构建的逆过程,即可得到

去噪后的地震有效信号。
经典的全奇异值分解( FSVD) 算法在计算奇

异值时,将矩阵所对应的奇异值和奇异矩阵全部给

出,再通过截断奇异值取前 k 个奇异值及所对应的

奇异向量进行信号重构[式(4)]。 由于实际上所

需要的奇异值数量较少,故 FSVD 算法理论上具有

较高的时间成本。 而部分奇异值分解( PSVD) 算

法在计算奇异值时,仅计算目标秩所对应的奇异值

个数,即计算前 k 个较大的奇异值,其余奇异值不

再计算[式(4)]。 因此,理论上 PSVD 算法与 FS-
VD 算法应得到相同的去噪结果,而由于计算奇异

值的差异,二者具有不同的计算效率。

2　 随机奇异值分解技术

随机算法是一种减少奇异值分解计算需求的

有效方式,适用于具有低秩结构的高维数据。 通过

随机采样策略提取高维数据中的关键信息,将高维

数据矩阵转化为小型数据矩阵,再进行数据关键结

构信息的学习或提取。
ROKHLIN 等[28]在 2009 年提出的随机奇异值分

解(RSVD)算法被广泛用于低秩近似去噪技术。 RS-
VD 算法假设M是一个 m 行 n 列的汉克尔矩阵(m≤
n),其目标秩为 k,l 为一整数(l>k 且 l≤m-k)。 利用

矩阵M构建一个小型矩阵 P=R[MMH ] iM,矩阵 M
的奇异值和奇异向量可以通过矩阵 P 近似计算,R 是

一个均值为 0、方差为 1 的独立同分布高斯数构成的

采样矩阵,λ是 QH 经奇异值分解得到的奇异值对角

矩阵。 RSVD 算法计算步骤如下:
输入:待处理数据 M,维度为 m×n,目标秩 k。
(1)

 

构建随机采样矩阵:R
(2)

 

矩阵采样: Ql ×n
 = Rl ×m[Mm×nMH

n×m] iMm×n

(3)
 

奇异值分解: QH
l×n

 =
 

Wn×lλl ×lUH
l ×l
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(4)
 

矩阵采样: Gm×k
 =

 

Mm×nWn×k

(5)
 

奇异值分解: Gm×k
 =

 

U
 

m×kSk×kTk×k

(6)
 

奇异向量: Vn×k
 =

 

W
 

n×kTk×k

输出:奇异值 S,奇异向量 U 和 V。
RSVD

 

算法利用随机采样矩阵 R 将原始高维

汉克尔矩阵转化为低维矩阵 Q,基于变换矩阵 Q
的奇异值分解来近似计算 M 的奇异值和奇异向

量。 奇异值的计算通过两个小矩阵的奇异值分解

估计,避免了大型矩阵的奇异值分解计算,从而减

少了计算时间。 值得注意的是,参数 i 是准确度和

计算速度之间的权衡因子,i 值越小,计算时间越

短,但近似准确度会降低。

3　 压缩奇异值分解技术

虽然 RSVD 算法已被证明可以有效降低传统

SVD 算法的计算成本,但其参数依赖性较强,不利

于实际处理中的应用。 针对这一问题,采用压缩奇

异值分解技术(CSVD) [29]与低秩近似技术相结合,
提高奇异值分解准确性和计算效率。

压缩感知理论的发展,为高效近似计算奇异值

分解提供了一个有效框架,可以通过一个较小的压

缩矩阵近似表示一个较大矩阵的信息[30] 。 压缩可

以理解为一个采样过程,通过采样捕获数据矩阵的

主要信息,然后再进行奇异值分解。 基于压缩感知

理论,地震数据可以从大量欠采样或压缩表示中进

行近似表达,用少量的测量来恢复完整的原始数

据。 为了获得数据 X∈ℝ m×n(m<n)的低秩奇异值

分解近似(目标秩为 k),假设存在一个随机测试矩

阵 Φ∈ℝ l×m,则压缩后的数据 Y 可以表示为

Y: = ΦX (6)
在奇异值分解计算中,奇异向量的计算是不可

或缺的。 对于任意一个矩阵 A,其奇异值和奇异向

量矩阵可通过内外点积的特征分解来实现:
ATA = (VSUT)(USVT) = VKVT (7)
AAT = (USVT)(VSUT) = UKUT (8)

其中,特征值为奇异值的平方, 即 K = S2;
USVT、VSUT 分别是 A 和 AT 的奇异值分解结果。
因此,为了计算矩阵 X 的奇异值和奇异向量,从压

缩感知理论出发,构建小型矩阵 B∈ℝ l×l:
B: = YYT (9)

相应的特征分解为:
B: = T􀭾DTT (10)

矩阵 T 和 D 分别为近似的特征向量和特征

值,且近似的奇异值为 􀭹S= 􀭾D 。
根据奇异值分解公式 X=USVT,相应的左右奇

异向量可以近似表示为 U = XVS-1 和 V = XTUS-1。
根据式(10)可知,式中包含了左奇异向量 T 和奇

异值 􀭹S。 因此,右奇异向量 􀭾V∈ℝ n×k 可恢复为
􀭾V: = YTT􀭹S -1 (11)

类似地,左奇异向量 􀭾U∈ℝ m×k 可以表示为
􀭾U: = X􀭾V􀭹S -1 (12)

由于实际中矩阵 􀭾U 的列往往仅是近似正交,
导致计算得到的特征值会存在近似误差,因此采用

缩放后右奇异向量的奇异值分解,即计算主成分的

奇异值分解:
􀭾U􀭹S =:USQT (13)

最后,更新右奇异向量:
V: = 􀭾VQ (14)

从而获得了数据矩阵 X 奇异值分解后的 U、S
和 V

 

3 个矩阵。 该过程的等价公式可以表示:
[􀭾U􀭹S]􀭾VT =:[USQT]􀭾VT =:USVT ≈ X (15)

由上可知,压缩奇异值分解首先基于压缩感知

理论对原始数据进行稀疏变换,将原始大型矩阵的

奇异值分解转化为稀疏变换后的小型矩阵奇异值

分解计算,利用该奇异值分解结果再计算求取原始

数据的奇异值分解结果,从而大大降低了计算时间

成本。 CSVD 算法计算步骤如下:
输入:待处理数据 X,维度为 m×n,目标秩 k。
(1)

 

构建稀疏变换矩阵:Φ
(2)

 

稀疏变换:Y: =ΦX
(3)

 

生成小型矩阵:B: =YYT

(4)
 

确保对称性:B: = (B+BT)
2

(5)
 

截断特征分解:Bk: =T􀭾DTT

(6)
 

特征值求解:􀭹S= 􀭾D
(7)

 

右奇异向量近似:􀭾V: =YTT􀭹S-1

(8)
 

左奇异向量近似:􀭾U: =X􀭾V􀭹S-1

(9)
 

左奇异向量更新:􀭾U􀭹S= :USQT

(10)
 

右奇异向量更新:V: =􀭾VQ
输出:奇异值 S,奇异向量 U 和 V。

4　 数值模拟与实际应用

为了验证所提方法的有效性,首先设计一个三

维合成地震记录数据,用于测试压缩奇异值分解技

术在噪声压制方面的性能;然后通过一个三维实际

地震数据应用,说明所提方法在处理实际复杂数据

方面的表现。
4. 1　 三维合成地震数据验证

所设计的三维合成地震数据如图 1 所示。 该

数据包含了 3 条线性同相轴,主测线和联络测线方
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向分别有 20 道,时间样点数为 300 个,采样间隔为 4
 

ms。 添加随机噪声后的数据如图 2 所示。

图 1　 三维合成地震数据

Fig. 1　 3D
 

synthetic
 

seismic
 

data

图 2　 三维含噪声合成数据

Fig. 2　 3D
 

noisy
 

synthetic
 

data

　 　 从图 2 可知,添加噪声后线性同相轴淹没在随

机噪声中,随机噪声分布于整个数据体背景,数据

信噪比较低,有效信号难以分辨和识别。 为了说明

所提方法的有效性,将所提方法与传统的奇异值分

解算法、RSVD 算法进行对比。 这里传统的奇异值

分解,分别采用经典的 FSVD 和 PSVD 方法进行奇

异值计算。 由于数据中含有 3 条线性同相轴,低秩

近似中目标秩均设置为 3。

图 3　 基于 CSVD 的三维合成地震数据随机噪声压制

Fig. 3　 Random
 

noise
 

suppression
 

of
 

3D
 

synthetic
 

seismic
 

data
 

using
 

CSVD

　 　 基于 CSVD 算法的低秩近似技术随机噪声压

制效果如图 3 所示。 由图 3 可知,经过随机噪声压

制处理后,线性同相轴得以突出,随机噪声基本得

以消除压制,数据信噪比有所提高,说明该方法在

随机噪声压制方面的良好性能;去除的噪声成分不

存在明显的有效信号成分,可以有效地保护地震数

据中的有效信号成分。
基于 FSVD 的低秩噪声压制技术处理结果如

图 4 所示。 从图 4 可知,基于 FSVD 算法的低秩

技术可以有效压制地震数据中的随机噪声,去噪

后的数据信噪比显著提高,而且去除的噪声部分

不包含明显的有效信号成分,说明该方法在随机

噪声压制方面具有可行性。 与图 3 对比可知,图
4 去噪结果中包含了较多的随机噪声,信噪比明

显降低。
基于 PSVD 的低秩噪声压制技术处理结果如

图 5 所示。 由图 5 可知,基于 PSVD 的低秩去噪效

果与图 4 相似,绝大部分噪声得以压制,且有效信

号没有明显的损伤。 与图 3 对比可知,图 5 去噪结

果中出现了较多随机噪声,信噪比降低。

109第 1 期 孙超等:基于压缩奇异值分解的高效地震数据随机噪声压制



图 4　 基于 FSVD 的三维合成地震数据随机噪声压制

Fig. 4　 Random
 

noise
 

suppression
 

of
 

3D
 

synthetic
 

seismic
 

data
 

using
 

FSVD

图 5　 基于 PSVD 分解的三维合成地震数据随机噪声压制

Fig. 5　 Random
 

noise
 

suppression
 

of
 

3D
 

synthetic
 

seismic
 

data
 

using
 

PSVD

　 　 基于 RSVD 的低秩噪声压制技术处理结果如

图 6 所示。 由图 6 可知,基于 RSVD 的低秩近似技

术可以有效压制数据中的随机噪声,去噪结果具有

较高的信噪比,且去除的噪声中不包含明显的有效

信号;与图 3 对比可知,RSVD 和 CSVD 算法获得

了较为相似的去噪结果,噪声得到了较好的压制,
具有较高的信噪比;而与图 4 和图 5 相比,RSVD
算法明显具有更强的压制噪声能力。

对比上述 4 种算法的去噪结果可知,基于 CS-
VD 和 RSVD 的低秩近似技术在随机噪声压制方面

具有更好的表现,可以获得信噪比较高的去噪结

果,FSVD 和 PSVD 算法同样可以有效压制随机噪

声,但压制效果相对不太理想。 4 种奇异值分解算

法所得到去噪结果的信噪比见表 3。 由表 3 可知,

RSVD 和 CSVD 算法所得去噪结果具有较高的信

噪比,与上述理论和定性分析结果相一致,说明了

RSVD 和 CSVD 算法具有更强的压制噪声能力。
为了对比算法的计算效率,统计 4 种奇异值分

解算法在本例中所需要的时间成本,见表 4。 硬件

方面采用英特尔 i7 处理器,32
 

G 内存进行计算。
为了避免单一计时的偶然性,表 4 中显示的计算时

间为 5 次计算取均值之后的结果。 从表 4 中可以

看出,CSVD 算法所需时间最短,计算效率最高;
RSVD 算法其次,

 

FSVD 和 PSVD 所需计算时间较

多。 经过分析可知,在矩阵行列不变的情况下,CS-
VD 算法的计算时间取决于目标秩 k;RSVD 算法的

计算时间取决于目标秩 k 和迭代参数 i,而为了保

证奇异值分解的准确性,i 需要取较大。
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图 6　 基于 RSVD 的三维合成地震数据随机噪声压制

Fig. 6　 Random
 

noise
 

suppression
 

of
 

3D
 

synthetic
 

seismic
 

data
 

using
 

RSVD

表 1　 三维合成地震数据不同算法的信噪比

Table
 

1　 SNRs
 

of
 

various
 

denoising
 

results
 

of
 

3D
 

synthetic
 

seismic
 

data

方法 FSVD PSVD RSVD CSVD

信噪比 5. 24 5. 24 7. 23 7. 26

表 2　 不同算法对三维合成地震数据的时间成本

Table
 

2　 Computational
 

cost
 

of
 

various
 

algorithms
 

on
 

3D
 

synthetic
 

seismic
 

data

方法 FSVD PSVD RSVD CSVD

时间 / s 3. 80 3. 38 2. 38 1. 69

4. 2　 三维实际地震数据应用

为了说明所提方法的有效性,将该方法用于三

维实际地震数据的噪声压制中,所采用的三维实际

数据如图 7 所示。 该数据持续时间为 1
 

s,采样间

隔为 1
 

ms,主测线和联络测线分别有 101 道和 31
道。 由图 7 可知,该数据中包含较多的随机噪声,
影响了数据振幅的准确性,导致同相轴的连续性难

以观察,不利于数据的精细化解释和反演。
低秩近似技术被用于该实际数据的随机噪声

压制,基于 CSVD 算法的低秩去噪结果如图 8 所

示。 由图 8 可知,基于 CSVD 的低秩近似技术可以

较好地压制实际数据中的随机噪声,处理后去噪结

果的信噪比明显提高,线性同相轴振幅得到增强,
连续性得以提高,更容易清楚地观察数据中存在

的一些构造,有利于数据的精细化处理与解释;
去除的噪声成分主要由随机噪声组成,不包含明

显的有效信号,说明了该方法对有效信号具有保

护作用。

图 7　 三维实际数据

Fig. 7　 3D
 

field
 

data

基于 FSVD 的低秩近似噪声压制结果如图 9
所示。 由图 9 可知,经过低秩近似处理后随机噪

声得到了很好的压制,同相轴连续性得以增强,
信噪比明显提高,噪声成分中不包含明显的有效

信号成分。 图 9 和图 8 的去噪结果较为相似,而
图 8( b)中包含了相对较多的噪声成分,说明了基

于 CSVD 算法的低秩近似技术可以更加有效地压

制噪声。
基于 PSVD 算法的低秩近似去噪结果如图 10

所示。 可以看出,图 10 与图 9 的去噪结果和噪声

成分都比较相似,符合其理论基础。
基于 RSVD 的低秩近似噪声压制结果如图 11

所示。 观察图 11 可知,基于 RSVD 算法的低秩近

似技术同样可以较好地压制实际数据中的随机噪
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图 8　 基于 CSVD 的三维实际数据随机噪声压制

Fig. 8　 Random
 

noise
 

suppression
 

of
 

3D
 

field
 

data
 

using
 

CSVD

图 9　 基于 FSVD 的三维实际数据随机噪声压制

Fig. 9　 Random
 

noise
 

suppression
 

of
 

3D
 

field
 

data
 

using
 

FSVD

图 10　 基于 PSVD 的三维实际数据随机噪声压制

Fig. 10　 Random
 

noise
 

suppression
 

of
 

3D
 

field
 

data
 

using
 

PSVD
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声,能够提高数据的信噪比,增强线性同相轴的连

续性,去噪结果与其他 3 种方法的结果相似。 从去

除的噪声成分来看,基于 RSVD 算法去除的噪声与

基于 PSVD 和 FSVD 算法去除的相似,与 CSVD 算

法相比,其包含的随机噪声较少,说明去噪结果中

仍残留了少部分随机噪声。

图 11　 基于 RSVD 的三维实际数据随机噪声压制

Fig. 11　 Random
 

noise
 

suppression
 

of
 

3D
 

field
 

data
 

using
 

RSVD

　 　 为了进一步对比不同算法的去噪表现,将不同

算法的去噪结果进行归一化振幅谱计算,相应的振

幅谱曲线如图 12 所示。 由图 12 可知,
 

FSVD 和

PSVD 算法由于计算结果的一致性,其相应的振幅

谱曲线出现重合;与 RSVD 算法对应曲线较为接

近,说明了其去噪效果较为相似;CSVD 算法所对

应的振幅谱曲线在高频区域整体幅较低,说明该算

法具有更好地压制高频随机噪声的能力。 振幅谱

对比结果进一步验证了基于 CSVD 的低秩近似技

术在复杂实际数据随机噪声压制中的良好表现。

图 12　 归一化振幅谱对比

Fig. 12　 Comparisons
 

of
 

the
 

normalized
 

spectrum

为了定量化比较不同奇异值分解算法的计算

效率,统计不同算法在该实际数据中所需的时间成

本,见表 5。 为了避免单次数据的偶然性,时间成

本采用 5 次平均值作为最终计算时间,所使用的硬

件设施与合成记录相同。 由表 5 可知,FSVD 算法

需要的计算时间是最多的,PSVD 算法比 FSVD 算

法所需时间有所减少,RSVD 算法所需时间进一步

减少,而 CSVD 算法所需时间最少,具有最高的计

算效率。 这与在合成数据中的表现是一致的,说明

了 CSVD 算法在计算奇异值分解方面的高效性。

表 3　 不同算法对三维实际数据的时间成本

Table
 

3　 Computational
 

cost
 

of
 

various
 

algorithms
 

on
 

3D
 

field
 

data

方法 FSVD PSVD RSVD CSVD

时间 / s 365. 24 219. 45 129. 51 28. 68

5　 结　 论

与 FSVD、PSVD 和 RSVD 算法相比,CSVD 算

法可以高效计算数据矩阵的奇异值分解,所需时间

成本较低,计算效率较高。
在合成数据和实际数据中的应用效果表明,相

对于 FSVD、PSVD 和 RSVD 算法,基于 CSVD 算法

的低秩近似技术可以更加有效地压制噪声,进一步

提高去噪结果的信噪比。
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