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摘　 要:为进一步提高地下断层识别准确率和解释效率,使用极限梯度提升树(XGBoost)机器学

习算法对煤层断层进行智能识别,并结合粒子群算法(PSO)优化模型相关参数,构建基于 PSO-
XGBoost 的断层构造识别模型。 建立正演模型对 PSO-XGBoost 模型进行检验,并基于滇东矿区

采集的实际数据对比分析 PSO-XGBoost 模型与 PSO-RF、PSO-SVM 模型的分类预测性能,选择

准确率和对数损失值作为评价分类器预测模型的主要指标评价各模型的准确度。 结果表明,基
于 PSO-XGBoost 的模型在断层构造识别中展现出较高的准确率和更好的稳定性。
关键词:断层识别;XGBoost;PSO;机器学习;参数优化
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Abstract:In
 

order
 

to
 

further
 

improve
 

the
 

accuracy
 

and
 

efficiency
 

of
 

underground
 

fault
 

identification,
 

an
 

intelligent
 

fault
 

recognition
 

model
 

based
 

on
 

the
 

extreme
 

gradient
 

boosting
 

tree
 

( XGBoost)
 

machine
 

learning
 

algorithm
 

was
 

constructed
 

for
 

coal
 

seam
 

faults,
 

combined
 

with
 

the
 

particle
 

swarm
 

optimization
 

(PSO)
 

algorithm
 

to
 

optimize
 

the
 

model's
 

related
 

parameters.
 

A
 

forward
 

model
 

was
 

established
 

to
 

verify
 

the
 

PSO-XGBoost
 

model,
 

and
 

the
 

classification
 

prediction
 

performance
 

of
 

the
 

PSO-XGBoost
 

model
 

was
 

compared
 

with
 

that
 

of
 

the
 

PSO-RF
 

and
 

PSO-SVM
 

models
 

based
 

on
 

actual
 

data
 

collected
 

from
 

the
 

Dian-
dong

 

mining
 

area.
 

The
 

accuracy
 

rate
 

and
 

log
 

loss
 

value
 

were
 

selected
 

as
 

the
 

main
 

evaluation
 

indicators
 

to
 

evaluate
 

the
 

accuracy
 

of
 

the
 

classification
 

prediction
 

models
 

for
 

each
 

model.
 

The
 

results
 

show
 

that
 

the
 

PSO-XGBoost
 

model
 

has
 

a
 

high
 

accuracy
 

in
 

fault
 

structure
 

identification;
 

the
 

PSO-XGBoost
 

model
 

has
 

higher
 

accuracy
 

and
 

better
 

stability
 

in
 

fault
 

identification.
Key

 

words:
 

fault
 

recognition;
 

XGBoost;
 

PSO;
 

machine
 

learning;
 

parameters
 

optimization

　 　 煤炭资源的高效安全开采一直备受关注。 地

下断层改变了煤岩层的埋藏条件[1] ,增加了煤炭

的开采难度和成本[2] ,断层位置处还容易发生矿

井水源突水[3] 、 顶板透水[4] 、 冒顶[5] 等矿山事
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故[6] 。 因此,断层的准确识别和预测对于煤矿勘

探与开发具有重要意义。
地震勘探是一种常用的煤矿地质构造探测方

法,在煤田勘探中扮演至关重要的角色[7] 。 地质

工作者不断尝试从地震数据中获取更多的信息用

于提高断层解释的准确率[8] ,解决构造解释存在

的问题,但对于小断层[9] 以及构造整体解释的效

果仍有较大的可提升空间。 当前,通过将先进勘探

技术与煤田三维地震勘探进行结合,已逐步建立了

针对 煤 矿 问 题 的 高 分 辨 率 三 维 地 震 勘 探 体

系[10-13] 。 目前,断层解释人员可以通过多维度信

息分析断层在地层中的分布情况,不仅降低了煤矿

潜在风险、节约时间成本,同时还提升了预测准

确性。
随着人工智能的兴起与发展,机器学习技术在

地震断层构造识别中的应用也逐渐得到了关

注[14-16] 。 任庆国等[17] 提出 PSO-SVM-BP 预测模

型对断层破碎带围岩变形进行预测,实践证明了模

型的预测精度较高。 杜鹏等[18] 采用随机森林模型

(RF)对藏东南地区的滑坡易发性进行了评价。 韩

成阳等[19]基于 SVM 对夏店煤矿断层进行了预测。
罗家举[20] 基于 UNet++网络结构模型实现了对断

层分布的智能识别。 但是上述方法都存在着不足,
例如 SVM 在处理大规模数据时训练时间较长,易
存在过拟合等问题;RF 的整体模型不易理解,不如

单决策树直观等。 杨楚龙等[21] 利用 XGBoost 算法

对新元煤矿东翼矿区地震地质构造进行识别,结果

表明 XGBoost 算法模型的预测精确度为 0. 95,虽
有效控制了过拟合问题,但是在参数调优上仍有提

高模型性能的空间。 温后珍等[22] 基于贝叶斯优化

后的 XGBoost 模型实现了高维数据集的超参数快

速优化,提高了石灰窑气的预测精度。 然而,贝叶

斯算法容易陷入局部最优解,并容易发生过拟合问

题,同样有一定的提升空间。 赵耀忠等[23] 依赖遗

传算法对 XGBoost 模型进行优化,实现了高精度煤

矿安全预警,但不能避免收敛速度较慢等问题。
针对断层解释过程中效率低、主观性强的问

题,以及当前主流机器学习模型存在的不足,采用

极限梯度提升树 ( eXtreme
 

Gradient
 

Boosting, XG-
Boost)方法对断层构造进行预测识别,并使用 PSO
算法[24] 对 XGBoost 模型中的超参数进行优化,提
出 PSO-XGBoost 预测模型。 基于矿区实际数据,
对比分析 XGBoost、RF[25] 和 SVM[26] 3 种模型的预

测结果,验证所提模型的可行性。

1　 PSO-XGBoost 原理

1. 1　 XGBoost 算法原理

XGBoost 算法[27] 是由梯度提升树 ( Gradient
 

Boosting
 

Tree,GBDT)算法发展而来,将多个弱分类

器(决策树)组合成强分类器,弥补了 GBDT 在可

扩展性和效率方面的不足[28] 。 此外,XGBoost 算

法在目标函数式(1)中引入了正则化项,可以防止

过拟合。

Obj = ∑m

i = 1
l(yi,ŷi) + ∑ K

k = 1
Ω( fk) (1)

式(2)为多个基学习器的组合来预测样本的

输出。

ŷi = ∑ K

k = 1
fkxi,fk ∈ F (2)

上两式中,l(yi,ŷi)为损失函数;yi 为真实值;ŷi 为

分类预测值;Ω( fk)为正则项;F 为回归树空间; fk
为第 k 棵回归树;xi 为数集中第 i 棵回归树的数据

样本;K 为全部回归树个数。
通过目标函进行误差计算。 通过迭代的方式

进行训练,每次迭代后添加新的回归树, t 次迭

代后:

ŷ( t)
i = ∑ t

j = 1
fk(xi) = ŷ( t -1)

i + ft(xi) (3)

式中,ŷ( t)
i 为第 t 次迭代后的预测值。

将式(3)代入式(1),得到第 t 次迭代后的目

标函数:

O( t)
bj

 =
 ∑m

i
 

=
 

1
l[yi,ŷ( t -1)

i
 +

 

ft(xi)] + Ω( fk) + σ

(4)
将式(4)进行泰勒二阶展开,同时引入正则项

Ω( fk)来减小过拟合情况的发生:

O( t)
bj ≅ ∑m

i
 

=
 

1
[∂yi( t -1) l(yi,ŷ( t -1)

i ) ft(xi)
 

+
 

1
2

∂2
ŷi( t -1) l(yi,ŷ( t -1)

i ) f2
t(xi)] + Ω( fk)

 

+
 

σ

Ω( fk)
 

=
 

γT
 

+
 1

2
λ‖ω2‖

ì

î

í

ï
ï
ïï

ï
ï
ï

(5)
式中,γ 为叶子树惩罚系数;T 为树叶子节点数目;
ω 为叶子权重;λ 为权重的惩罚系数;σ 为与观测

值
 

yi 相关的标准差或不确定性。
XGBoost 的参数分为常规参数、 增强参数

(Boosting
 

Parameters) 和学习控制参数 ( Learning
 

Task
 

Parameters)。 常规参数包括学习率( eta)、树
的数量(n_estimators)、最大深度( max_depth)、最
小样本分割数( min_child_weight)等,这些参数影

响模型复杂度和学习能力的平衡;增强参数包括子
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采样率(subsample)、列采样率(colsample_bytree),
用于防止模型过拟合;学习控制参数包括目标函数

(objective)、评估指标( eval_metric),与具体任务

相关。
1. 2　 粒子群算法(PSO)

XGBoost 超参数选取不当可能会导致模型出

现过拟合或欠拟合情况,选择 PSO 算法对超参数

进行优化。
PSO 算法步骤为:
(1)

 

设定粒子个体的位置和速度,并设置适应

度函数评估其优劣。
(2)

 

基于粒子的历史最优位置和全局最优位

置,并权衡粒子的个体和社会经验的权重,不断更

新粒子的速度和位置并进行择优。
(3)

 

计算择优后相应粒子最终位置的适应度,
并且同步更新。 迭代过程中,粒子会不断重复上述

步骤,直到达到终止条件(达到最大迭代次数或找

到满意的解)。
1. 3　 PSO-XGBoost 模型及评价指标

1. 3. 1　 PSO-XGBoost 模型断层识别流程

PSO-XGBoost 模型断层识别[29] 的流程如图 1
所示。

图 1　 PSO-XGBoost 模型断层识别流程

Fig. 1　 Flow
 

chart
 

of
 

PSO-XGBoost
 

model
 

fault
 

identification

(1)
 

建立正演模型,对正演模型采集得到的数

据做基本预处理工作。
(2)

 

按照 7 ∶ 3 的比例划分训练集和测试集,
选择适合的适应度函数并初始化粒子个体最优值

和全局最优值。
(3)

 

更新优化粒子速度与位置,通过相关公

式计算更新个体的适应度值,直到单体获得的最

优为全局最优值时,迭代终止(或达到最大迭代

次数) 。
(4)

 

将最优参数应用到 XGBoost 分类模型进

行训练集的训练。
1. 3. 2　 评价指标

对于分类预测问题,一般采用以下几项指标:
(1)

 

准确率(Accuracy),是分类模型中的正确

预测分类样本的比例,准确率越高越好。
Accuracy = (TP+TN) / (TP+TN+FP+FN) (6)

式中,TP 为真阳性;TN 为真阴性;FP 为假阳性;FN
为假阴性。

(2)
 

精确率(Precision),是指分类模型正确判

断正类的概率。
Precision = TP / (TP+FP) (7)

(3)
 

召回率(Recall),是指分类模型正确判断

正类的能力,是全部正类样本中被分类器正确判断

为正类的概率。
Recall = TP / (TP+FN) (8)

(4)
 

F1 分数( F1-score),主要是精确率和召

回率的调和平均数,可以综合这两个指标的表现。
F1-score = 2×precision×recall / (precision+recall)

(9)
采用准确率和精确率以及 F1-score 这 3 个指

标进行评估,评价指标混淆矩阵见表 1。

表 1　 混淆矩阵评价指标

Table
 

1　 Chaos
 

matrix
 

of
 

evaluation
 

indicators

样本标签 预测非断层(0) 预测断层(1)

非断层(0) 真阴性(TN) 假阴性(FN)

断层(1) 假阳性(FP) 真阳性(TP)

2　 模型检验

2. 1　 正演模型构建

为更好地分析断层位置处引发的地震响应,建
立了含断层合成地质模型,如图 2 所示。 模型参考

了煤矿实际断层的揭露情况,总共分为 3 层,上、下
层为砂岩层,波速为 3

 

200
 

m / s,密度为 2. 23
 

g /
cm3;中间煤层埋深为 300

 

m,波速为 3
 

000
 

m / s,密
度为 2. 2

 

g / cm3,厚度为 10
 

m。 共设置了 5 个断

层,包括 4 个正断层和 1 个逆断层,中心点位置相

差 30
 

m,断层方向一致,
 

断层断距分别为 3、5、5、
10、20

 

m。 观测系统中炮点与检波点重合,间距均
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为 1
 

m,震源采用主频为 60
 

Hz 的雷克子波,以垂直

方式进行激发。

图 2　 含断层合成地质模型

Fig. 2　 Synthetic
 

geologic
 

model
 

with
 

faults

通过波场正演得到的零偏移距地震记录,如图

3 所示。 地震记录结果与给出的正演模型结果一

致,随着断层断距增加,对应的断层构造解释难度

逐渐降低。

图 3　 零偏移距地震记录

Fig. 3　 Zero-offset
 

seismic
 

data

2. 2　 XGBoost 模型训练

应用传统的 XGBoost 模型进行断层分类器模

型的训练,对正演剖面提取 7 种断层的地震属性:
方差体、瞬时相位、瞬时频率、反射强度、混沌体、均
方根振幅、最大振幅。 将属性数值与断层信息进行

匹配,总共得到 900 组样本点。 其中,断层点 108
个,非断层点 792 个,按照 7 ∶ 3 进行训练集和测试

集的划分。 模型训练所需参数根据以往训练经验

进行设定,XGBoost 分类器参数取值见表 2。

表 2　 XGBoost 分类器参数

Table
 

2　 XGBoost
 

classifier
 

parameters

参数 参数值

学习率(learning_rate)
 

0. 1

弱分类器(n_estimators)
 

100

最大树深(max_depth)
 

3

最小下降值(gamma)
 

0. 01

随机采样比例(subsample) 0. 5

随机采用列数占比(colsample_bytree) 0. 3

将数据进行预处理后,对 XGBoost 分类预测模

型进行训练,按照表 2 中的参数值进行 XGBoost 模
型的学习。 训练过程中,XGBoost 模型的准确率和

损失函数随迭代次数的变化如图 4、图 5 所示。
 

由

图 4 可知,整个训练过程进行了 1
 

000 次迭代,训
练准确率高达 99% 。 由图 5 可知,相应的损失函数

下降速度较慢,模型预测效率较低。 XGBoost 模型

在训练集上准确率为 99% ,精确率为 94% ,召回率

为 90% ,f1-score 为 87% 。

图 4　 XGBoost 模型训练准确率随迭代次数变化

Fig. 4　 Accuracy
 

change
 

of
 

the
 

XGBoost
 

model
 

with
 

the
 

number
 

of
 

iterations

图 5　 XGBoost 模型损失函数随迭代次数变化

Fig. 5　 Loss
 

function
 

change
 

of
 

the
 

XGBoost
 

model
 

with
 

the
 

number
 

of
 

iterations

2. 3　 PSO-XGBoost 模型训练验证

应用
 

PSO 算法对 XGBoost 分类模型的参数进

行寻优,需要优化的参数有:learning_rate、n_esti-
mators、max_depth、gamma、subsample 和 colsample_
bytree。 通过记录比较训练准确率和对数损失值来

判断参数是否为最优结果,
 

PSO 算法寻优后最佳

参数值见表 3。
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表 3　 PSO 算法寻优后最优参数

Table
 

3　 Optimal
 

parameters
 

after
 

PSO
 

optimization
参数 参数值

learning_rate 0. 14
n_estimators 302
max_depth 2

gamma 0. 03
subsample 0. 732

colsample_bytree 0. 332

使用 PSO 寻优后的参数,基于相同的正演数

据对 PSO-XGBoost 模型进行训练,相应的准确率

和损失函数随迭代次数的变化如图 6、图 7 所示。
可以看出,PSO -XGBoost 模型预测准确率和损失

函数值在迭代 19 次后均趋于收敛状态,相对于采

图 6　 PSO-XGBoost 模型准确率随迭代次数变化

Fig. 6　 Accuracy
 

change
 

of
 

the
 

PSO-XGBoost
 

model
 

with
 

the
 

number
 

of
 

iterations

图 7　 PSO-XGBoost 模型损失函数随迭代次数变化

Fig. 7　 Loss
 

function
 

change
 

of
 

the
 

PSO-XGBoost
 

model
 

with
 

the
 

number
 

of
 

iterations

用直接经验参数的 XGBoost 模型迭代速度明显提

高;经过 100 次的迭代计算后,PSO-XGBoost 训练

集结果准确率为 99. 39% ,精确率为 95% ,召回率

为 100% ,f1-score 为 97. 44% 。 应用 PSO 算法对模

型参数进行优选,可以更快找到最佳的参数值,缩
短模型迭代次数,提高预测效率。

采用最优参数的 PSO-XGBoost 预测模型在相

应测试集上的预测结果如图 8 所示。 由图 8 可知,
PSO-XGBoost

 

模型分类性能良好,该模型在测试集

上的分类准确率达到了 92. 59%, 精确率达到

88. 33%,召回率达到 93. 33%,f1-score 为 92. 98%。

图 8　 PSO-XGBoost 模型测试集预测结果

Fig. 8　 Results
 

of
 

the
 

test
 

dataset
 

using
 

the
 

PSO-XGBoost
 

model

PSO-XGBoost 模型的断层预测结果如图 9 所

示。 PSO-XGBoost 分类模型总共预测出 6 个断层,
在第一个样本处出现了预测误差,错误地预测了断

层构造;正演模型中所设置的 5 个断层都被准确识

别,说明该模型具有判别断层断距的能力,预测结

果与正演模型所设置的情况基本一致。
 

图 9　 PSO-XGBoost 模型断层预测结果

Fig. 9　 Fault
 

prediction
 

results
 

using
 

the
 

PSO-XGBoost
 

model

3　 实际应用

3. 1　 矿区背景介绍

滇东矿区位于中国东南部的山区地带,以该矿

区玉旺井田[30] 为研究背景,玉旺井田位于富源县

老房煤矿区第四勘探区的西南部,受区域构造影
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响,研究区内地质结构较为复杂,断层构造较为发

育,对煤炭等矿产资源开采的挑战较大。
针对该研究区的复杂地质情况,围绕建设透明

矿山、智慧矿井的要求[31-32] ,滇东矿区开展了三维

地震精细勘探。 基于高分辨率三维地震数据体[33]

(图 10),利用精细地震解释方法提取有效地震地

质信息,使煤矿的复杂地质信息透明化,促进煤矿

的安全高效生产。

图 10　 地下煤层分布[33]

Fig. 10　 Coal
 

Seam
 

Distribution
 

Area[33]

研究区内主要可采煤层深度约 200
 

m,煤巷走

向最长超 1
 

500
 

m。 目标煤层中揭露的断层以正断

层为主,少量逆断层,采集了 11 口井、4 条巷道和

18 条揭露断层的信息(图 11)。 揭露断层的落差、
倾角和延展长度等信息见表 4。

图 11　 研究区井、巷道及揭露断层分布情况[33]

Fig. 11　 Distribution
 

of
 

wells,
 

roadways
 

and
 

exposed
 

faults
 

in
 

the
 

study
 

area[33]

3. 2　 数据集构建与预测

统计工区内共有 106
 

500 个数据点,由于数据

量庞大,研究降低了地震属性样本数据的维数,以减

少信息重叠和噪声对数据本身的影响。 选用 10
 

ms
的时窗沿煤层提取地震属性信息,使用与正演模拟

部分相同的 7 种地震属性(方差体、瞬时相位、瞬时

频率、反射强度、混沌体、均方根振幅、最大振幅)作

为特征,构建研究区的属性数据集。

表 4　 研究区揭露断层信息

Table
 

4　 Exposed
 

fault
 

information
 

in
 

research
 

area

断层

编号

落差

/ m
倾角

/ ( °)
长度

/ m
断层

编号

落差

/ m
倾角

/ ( °)
长度

/ m

1 0 ~ 10 75 ~ 85 825 10 0 ~ 5 75 ~ 80 183

2 0 ~ 3 75 ~ 85 82 11 0 ~ 5 75 ~ 85 156

3 0 ~ 5 75 ~ 80 46 12 0~ 40 75 ~ 85 914

4 0 ~ 3 75 ~ 85 79 13 0 ~ 3 75 ~ 80 115

5 0 ~ 5 75 ~ 85 54 14 0~ 15 55 ~ 65 564

6 0 ~ 5 75 ~ 85 43 15 0~ 12 75 ~ 85 513

7 0 ~ 5 75 ~ 85 444 16 0 ~ 5 75 ~ 80 171

8 0 ~ 60 75 ~ 80 1
 

375 17 0~ 10 50 ~ 55 619

9 0 ~ 25 75 ~ 80 611 18 0~ 30 50 ~ 55 562

同时,统计钻井、巷道处揭露的断层信息,
“1”表示该位置存在断层,“ 0”表示不存在断层,
将这些数据点的坐标位置与其属性值进行匹配,
构建已知标签的数据集。 数据经过处理后,选择

断层特征明显位置的测点,筛选后共有 325 个数

据点,其中揭露断层有 200 个,非断层有 125 个

(图 12) 。
根据获得的实际数据,按 8 ∶ 2 的比例划分训

练集和测试集,采用 PSO -XGBoost、PSO -SVM 和

PSO-RF
 

3 个模型对数据标签进行预测分类,将预

测结果与标记的断层进行比对,判断各模型的准确

率。 其中,为对比 PSO-XGBoost 与 PSO-SVM、PSO-
RF 模型的性能,只对 learning_rate,n_estimators 以

及 max_depth
 

3 个主要参数进行寻优。
设置寻优参数为 learning_rate = 0. 18,n_esti-

mators = 203,max_depth = 2。 PSO-XGBoost 模型在

训练集中的准确率和损失函数随迭代次数而变化

如图 13 所示。 由图 13 可知,PSO-XGBoost 模型在

训练集的准确率最高达到 93. 7% ,在第 27 次迭代

时收敛,损失函数值最低为 0. 061。
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图 12　 揭露的断层分布

Fig. 12　 Exposed
 

fault
 

distribution

图 13　 PSO-XGBoost 迭代变化

Fig. 13　 Accuracy
 

and
 

loss
 

change
 

of
 

the
 

PSO-XGBoost
 

model
 

with
 

the
 

number
 

of
 

iterations

　 　 结合图 14 测试集的结果分析,可知 PSO-XG-
Boost 模型的整体预测结果较好。 将训练后的 PSO-
XGBoost 模型用于预测地区断层,揭露断层预测结

果如图 15 所示。 可以看出,PSO-XGBoost 模型整

体断层预测的准确率较高,在 800 ~ 850
 

m 之间的

揭露断层预测准确率相对较低,推测可能是由于该

段断层分布较密集,预测出现偏差。
3. 3　 预测结果对比

基于相同数据集,采用 PSO-SVM 和 PSO-RF
两种预测模型进行分类识别,与 PSO-XGBoost 模

型进行对比。
PSO-RF 模型在第 23 次迭代时收敛,如图 16

所示,模型优化参数取值为 n_estimators = 21,max_
depth = 4。 训练集最大准确率 87. 6% 。

图 14　 PSO-XGBoost 测试集结果

Fig. 14　 Results
 

of
 

the
 

PSO-XGBoost
 

test
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图 15　 揭露断层预测(PSO-XGBoost)
Fig. 15　 Prediction

 

of
 

exposed
 

fault
 

(PSO-XGBoost)

图 16　 PSO-RF 迭代变化

Fig. 16　 Accuracy
 

and
 

loss
 

change
 

of
 

the
 

PSO-RF
 

model
 

with
 

the
 

number
 

of
 

iterations

　 　 PSO -RF 测试集结果(图 17) 的准确率达到

84. 6% 。 训练后的 PSO-RF 模型预测揭露断层,预
测结果如图 18 所示,可见预测准确率较差,存在多

处揭露断层预测错误,预测效果一般。
PSO-SVM 在训练集上的表现如图 19 所示,最

大准确率为 74. 6%,最小对数损失值 0. 255。 PSO-
SVM 模型通过 13 次迭代得到最优参数:C = 43,
gamma = 0. 000

 

1,degree = 19。 该模型在训练集的

表现较差,准确率低,但是在测试集的表现达到

了 89. 6% 。
 

图 20 中 PSO-SVM 测试集结果表现较好,但
在训练过程中准确率欠佳,推断训练中存在欠拟

合,模型鲁棒性较差或数据与该模型不适合,训练

集预测断层效果与测试集结果不一致,预测结果不

准确。 预测模型在区域整体揭露断层的预测表现
图 17　 PSO-RF 测试集结果

Fig. 17　 Results
 

of
 

the
 

PSO-RF
 

test
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图 18　 揭露断层预测(PSO-RF)
Fig. 18　 Prediction

 

of
 

exposed
 

fault
 

(PSO-RF)

图 19　 PSO-SVM 迭代变化

Fig. 19　 Accuracy
 

and
 

loss
 

change
 

of
 

the
 

PSO-SVM
 

model
 

with
 

the
 

number
 

of
 

iterations

图 20　 PSO-SVM 测试集结果

Fig. 20　 Results
 

of
 

PSO-SVM
 

test

如图 21 所示。 由图 21 可知,PSO-SVM 预测模型

仍然存在揭露断层预测错误情况,其效果略逊于

PSO-XGBoost 模型,且该模型测试集结果与整体

揭露断层结果的预测有偏差。

表 5　 不同模型结果分析

Table
 

5　 Analysis
 

of
 

different
 

model
 

results

预测模型
训练集最大

准确率 / %
训练集对

数损失值

测试集最大

准确率 / %

PSO-XGBoost 93. 7 0. 061 92. 3

PSO-RF 87. 6 0. 135 84. 6

PSO-SVM 74. 6 0. 255
89. 6(训练

集欠拟合)

PSO-XGBoost、PSO-SVM 和 PSO-RF3 种模型

的 50 次交叉验证结果如图 22 所示,可以看出,
PSO-XGBoost 模型的稳定性表现更好。
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图 21　 揭露断层预测(PSO-SVM)
Fig. 21　 Prediction

 

of
 

exposed
 

fault
 

(PSO-SVM)

图 22　 PSO-XGBoost、PSO-SVM 和 PSO-RF 三种模型的 50 次交叉验证结果

Fig. 22　 Results
 

of
 

50
 

cross
 

validations
 

of
 

the
 

PSO-XGBoost
 

PSO-SVM
 

and
 

PSO-RF
 

models

　 　 对比 3 种预测模型的预测,
 

PSO-RF 和 PSO-
SVM 的准确率均不理想,分别出现了欠拟合与稳

定性差的情况,PSO -XGBoost 在识别准确率方面

表现良好。

4　 结　 论

针对地下断层识别问题,结合 PSO 算法和

XGBoost 算法,提出 PSO-XGBoost 断层智能识别模

型,并基于实际数据与传统的机器学习方法进行对

比,得到主要结论如下:
(1)

 

采用 PSO 对 XGBoost 分类模型中的多参

数进行寻优,不仅可以显著提高 XGBoost 模型在断

层识别方面的预测精度,还能加快其收敛速度。
(2)

 

基于正演模型所获得的数据对 PSO-XG-
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Boost 模型进行检验,得到 PSO-XGBoost 分类预测

模型准确率在 99% 以上,具有高效准确的预测效

果和更强的泛化能力。
(3)

 

采用 PSO-XGBoost、PSO-SVM、PSO-RF
 

3 种模型对滇东矿区实际数据进行预测分类,得到

判别准确率分别为 93. 7% 、87. 6% 、74. 6% ,PSO -
XGBoost 预测模型在分类精度方面明显优于另外

两种模型。
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