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Research on intelligent fault identification method of coalfield
based on the PSO-XGBoost algorithm
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2. School of Remote Sensing Science and Technology, Aerospace Information Technology University , Jinan Shandong 250299, China
Abstract ; In order to further improve the accuracy and efficiency of underground fault identification, an
intelligent fault recognition model based on the extreme gradient boosting tree ( XGBoost) machine
learning algorithm was constructed for coal seam faults, combined with the particle swarm optimization
(PSO) algorithm to optimize the model’s related parameters. A forward model was established to verify
the PSO-XGBoost model, and the classification prediction performance of the PSO-XGBoost model was
compared with that of the PSO-RF and PSO-SVM models based on actual data collected from the Dian-
dong mining area. The accuracy rate and log loss value were selected as the main evaluation indicators
to evaluate the accuracy of the classification prediction models for each model. The results show that the
PSO-XGBoost model has a high accuracy in fault structure identification; the PSO-XGBoost model has
higher accuracy and better stability in fault identification.
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Table 3 Optimal parameters after PSO optimization
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