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摘　 要:为实现煤矿地质透明化,促进煤矿智能化发展进程,解决传统岩层界面识别方法速度慢、
成本高以及精度差的难题,围绕岩层界面智能识别进行研究。 首先,在实验室内浇筑地层模型,
通过自主研制的随钻装置开展位移、转速、扭矩和声压级等参数的实时采集;其次,采用指数加权

损失函数自动过滤位移数据异常值,提出钻速计算方法;然后,用变点检测算法、RStudio 软件的

Strucchange 模型和决策树算法分析钻速、转速、声压级和扭矩等参数,对比分析其识别岩层界面

的准确性;最后,在 2 种典型的地质条件下进行岩层界面随钻识别效果分析。 结果表明:以钻速

为输入参数,决策树算法是快速准确识别岩层界面的最佳方式;现场试验中煤岩界面位置预测的

平均误差为 0. 04
 

m,但对于复合顶板岩层界面识别准确性相对较低。
关键词:巷道顶板;钻进参数;岩层界面随钻探测;煤岩界面;钻孔
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Abstract:This
 

paper
 

investigates
 

measurement
 

while
 

drilling
 

for
 

rock
 

strata
 

interface
 

to
 

achieve
 

geolog-
ical

 

transparency,
 

promote
 

intelligence
 

development,
 

and
 

address
 

the
 

limitations
 

of
 

traditional
 

rock
 

de-
tection

 

methods
 

in
 

coal
 

mines,
 

including
 

slow
 

speed,
 

high
 

costs,
 

and
 

poor
 

accuracy.
 

Firstly,
 

this
 

study
 

proposes
 

a
 

laboratory-level
 

drilling
 

device
 

for
 

real-time
 

data
 

acquisition
 

of
 

displacement,
 

revolutions
 

per
 

minute,
 

torque,
 

and
 

sound
 

pressure
 

level
 

during
 

drilling
 

the
 

formation
 

model
 

poured
 

in
 

the
 

laboratory.
 

Secondly,
 

an
 

exponentially
 

weighted
 

loss
 

function
 

was
 

used
 

for
 

automatic
 

screening
 

of
 

anomalies
 

in
 

dis-
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placement
 

data
 

and
 

obtained
 

a
 

penetration
 

rate
 

that
 

better
 

reflect
 

variations
 

in
 

drilling.
 

Then,
 

the
 

accu-
racy

 

of
 

rock
 

interface
 

identification
 

was
 

analyzed
 

using
 

parameters
 

such
 

as
 

penetration
 

rate,
 

revolution
 

per
 

minute,
 

sound
 

pressure
 

level,
 

and
 

torque
 

using
 

the
 

application
 

of
 

the
 

change
 

point
 

detection
 

algo-
rithm,

 

the
 

strucchange
 

model
 

in
 

RStudio
 

software,
 

and
 

the
 

decision
 

tree
 

algorithm.
 

Finally,
 

the
 

per-
formance

 

of
 

rock
 

interface
 

identification
 

during
 

drilling
 

was
 

evaluated
 

under
 

2
 

typical
 

geological
 

condi-
tions.

 

Rresults
 

indicate
 

that
 

the
 

decision
 

tree
 

algorithm
 

is
 

the
 

most
 

effective
 

method
 

for
 

quick
 

and
 

accu-
rate

 

identification
 

of
 

rock
 

interfaces
 

with
 

penetration
 

rate
 

as
 

the
 

input
 

parameter.
 

On-site
 

tests
 

yielded
 

0. 04m
 

of
 

average
 

error
 

in
 

predicting
 

the
 

position
 

of
 

the
 

coal
 

rock
 

interface.
 

Yet,
 

the
 

method
 

produces
 

relatively
 

low
 

accuracy
 

in
 

rock
 

interface
 

identification
 

of
 

composite
 

roof
 

rock
 

strata.
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　 　 岩层特征准确识别是支护方案设计的重要依

据[1] 。 岩层钻探在石油、采矿和隧道工程等多个

领域应用广泛[2-3] ,是许多工程必不可少的常规工

序,钻探过程中的钻进参数中包含大量有用信息,
基于随钻参数进行围岩特征识别是重要的发展方

向。 有学者依托油田钻探工程,利用人工智能通过

机械比能估算地质力学参数[4] 。 在采矿领域,刘
少伟等[5-6]利用数值模拟法分析了顶板锚固孔钻

进时钻杆的振动机理、不同强度岩石钻进响应特征

和机械比能,认为振动信号是岩层识别的重要指

标。 目前也出现了许多随钻参数采集设备,王琦

等[7-8]研发了多功能岩石钻探测试系统,研究了钻

进参数与岩石力学参数关系,得出随钻参数与岩石

强度、岩石内聚力和内摩擦角关系模型。 VARD-
HAN 等[9-10]通过试验研究了不同强度岩石钻进时

声压级响应特征,得出可以用声压级来预测岩石的

抗压强度。 KUMAR 等[11] 对 5 种不同类型的岩石

开展钻进试验,并分析钻进时声音频率与岩石单轴

抗压强度、抗拉强度和密度等之间的关系,验证了

单轴抗压强度回归预测模型的准确性。 张幼振

等[12]采用自主研制的钻进试验系统,采集钻速、转
速和钻压等钻进参数,并分析了钻进参数响应特

征,建立了典型含煤地层钻速预测模型。 YASAR
等[13]在实验室开展水泥砂浆钻进试验,研究发现

随着钻进深度的增加,钻进速度逐渐下降。 何明

明[14]采用自主研发的旋切触探仪,开展旋切钻进

参数与岩石力学参数关系研究,建立了岩体力学参

数和岩体质量等级预测模型,提出现场快速获取岩

石力学参数的智能方法。 高红科等[15-16] 利用研发

的岩体数字钻进试验系统,开展注浆岩体数字钻进

试验,提出围岩注浆强度的随钻评价方法。 岳中文

等[17-18]综合分析当前岩性随钻识别技术发展现

状,研发了煤矿巷道液压锚杆钻机随钻参数系统,

得出随钻参数与岩石力学参数具有较强的相关性。
上述研究表明,钻进参数与岩石强度具有很强

相关性,这为顶板岩层界面识别提供了依据。 从现

有的随钻设备来看,这些设备均朝下钻进,这不利

于岩屑的排出[19] ,而在巷道顶板锚固孔钻进时主

要采用朝上钻进的方式。 目前,对于巷道顶板岩层

界面随钻自动化识别的研究工作相对较少。
针对上述问题,通过自主研制锚固孔钻进模拟

装置,在实验室浇筑地层模型进行巷道顶板岩层钻

进试验,并实时采集随钻参数,分析不同算法下各

随钻参数对岩层界面的识别效果。 最后,在 2 种典

型地质条件下进行了试验验证,即煤岩界面随钻识

别和复合顶板岩层界面随钻识别。

1　 地层模型界面随钻识别试验

1. 1　 试验设备

自主设计的随钻试验装置如图 1 所示,该试验

装置可以实时采集位移(采集频率 25
 

Hz)、转速

(采集频率 25
 

Hz)、扭矩(采集频率 10
 

Hz)和声压

级(采集频率 1
 

Hz)等参数。 钻机底部磁铁吸力可

达 14
 

500
 

N,调节好钻机位置后,打开磁力开关可

以固定钻机位置,防止钻进过程中钻机摇摆。 扭矩

传感器连接在 B19 六棱柱钻杆中间,转速传感器

通过钻杆上的反光贴反射信号记录转速。 岩样通

过固定柱固定在重力加载板下方,重力加载板在重

力作用下沿着导向柱向下滑动。 钻头采用直径为

30
 

mm 的两翼型聚晶金刚石复合片(Polycrystalline
 

Diamond
 

Compact,PDC)锚杆钻头。
 

1. 2　 随钻参数采集

地层模型原材料为砂子(粒径小于 3
 

mm)、黄
土和 42. 5 级普通硅酸盐水泥等,各层材料配比见

表 1。 浇筑的地层模型尺寸为 150
 

mm×150
 

mm×
150

 

mm,如图 2 所示。 该地层模型包含 2 个岩层
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图 1　 自主设计的随钻试验装置

Fig. 1　 Self-designed
 

experimental
 

device
 

for
 

real-time
 

acquisition
 

of
 

drilling
 

parameters

图 2　 浇筑的地层模型

Fig. 2　 Poured
 

stratum
 

model

界面,1 号岩层和 3 号岩层材料配比相同。 将该地

层模型放在常温条件下养护 28
 

d,1 号岩层和 3 号

岩层 单 轴 抗 压 强 度 是 6. 8
 

MPa, 抗 拉 强 度 是

0. 6
 

MPa,内聚力为 2. 0
 

MPa。 2 号岩层单轴抗压

强度、 抗拉强度和内聚力分别为 2. 8、 0. 2 和

1. 3
 

MPa。 采用自主设计的随钻装置进行钻进,实
时采集钻进时的位移、转速、扭矩和声压级。

表 1　 岩层材料配比

Table
 

1　 Material
 

ratio
 

of
 

formation
 

samples
 

kg / m3

岩层编号 砂子 黄土 42. 5 普通硅酸盐水泥 水

1 533. 33 755. 56 1
 

185. 19

2 200. 00 1
 

569. 83 558. 46 444. 44

3 533. 33 755. 56 1
 

185. 19

首先,调试各数据采集传感器和数据采集系

统,保障其能够正常工作;其次,将浇筑的地层模型

固定在重力加载板下方;然后,调节钻机位置,使钻

头对准试件中心;最后,打开钻机磁力开关和各传

感器数据采集开关,开始地层模型钻进试验并实时

采集钻进参数。 整理地层模型钻进过程中采集的

数据,如图 3 所示。
1. 3　 钻速获取方法

钻速是反映岩层特性的重要参数之一,钻速可

由采集到的位移数据计算获得。 假设 ti 时刻对应

的位移为 Li,则传统计算钻速的方法如下:

V0( ti) =
Li +1 - Li

ti +1 - ti
(1)

因为实际位移数据中存在异常值,从传统钻速

中难以快速识别出岩层界面处的响应信号。 在此

采用指数加权损失函数估计原始数据的趋势[20] ,
假设采集的原始位移数据样本数为 n,第 m 点的位

移估计值为

L(m) =
∑
m

i = 1
L( i)(1 - λ)m-i

∑
m

i = 1
(1 - λ)m-i

,m = 1,2,…,n

(2)
式中,λ 为平滑参数,取值为 0. 05;(1-λ)m-i 为权

重;L( i)
 

和
 

L(m)
 

分别为实际采样点和被估计

的点。
通过式(3)可以得到处理后的钻速。

V2( tm2
) =

∑
m2

m1 = 1
V1( tm1

)(1 - λ)m2-m1

∑
m2

m1 = 1
(1 - λ)m2-m1

(3)

V1( tm1
) =

Lm1+1 - Lm1

tm1+1 - tm1

(4)

处理原始位移数据得到钻速曲线如图 4 所示。
由图 4 可知,相比于原始位移和传统钻速,处理后

的位移和钻速更能反映钻进参数变化趋势。

97第 1 期 李点尚等:基于随钻参数响应特征的巷道顶板岩层界面识别方法研究



图 3　 地层模型钻进数据散点图

Fig. 3　 Scatter
 

plot
 

of
 

data
 

from
 

stratum
 

model
 

drilling

图 4　 数据处理前后曲线

Fig. 4　 Curves
 

before
 

and
 

after
 

data
 

processing

1. 4　 岩层界面自动识别

通过人工观察法,难以从钻速、转速、扭矩和声

压级等曲线中快速识别岩层界面位置。 为比较不

同算法模型和钻进参数对岩层界面的识别效果,文

中采用 3 种算法:算法一是变点检测模型,主要参

考 QIU 等[21]提出的变点检测步骤;算法二是基于

RStudio 软件的 Strucchange 模型[22] ;算法三是决策

树算法,RStudio 软件提供了 tree 包专门用于分类。
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这些算法在统计学中已经发展成熟,但很少在岩层

界面随钻识别中应用。
以岩层界面识别精度和识别所用时间 2 个指

标来筛选最佳预测方法。 3 种算法基于不同随钻

参数的岩层界面识别结果如图 5 所示(不同颜色

代表不同岩层),识别结果统计见表 2。 由图 5 和

表 2 可知,3 种算法以钻速为输入参数时,岩层界

面识别结果相同,且相比于其他钻进参数,基于钻

速对岩层界面位置进行识别更准确,基于声压级对

岩层界面位置的识别准确性次之,基于转速和扭矩

对岩层界面位置的识别结果较差。 以钻速作为输

入参数时,变点检测模型用时 354
 

s,Strucchange 模

型用时 95
 

s,决策树算法用时 2
 

s。 综合比较可以

得出,以钻速为指标,用决策树算法进行岩层界面

识别是最佳选择。

图 5　 不同随钻参数和算法岩层界面识别结果

Fig. 5　 Identification
 

results
 

of
 

strata
 

interface
 

with
 

different
 

parameters
 

and
 

algorithms
 

while
 

drilling

表 2　 不同参数和算法岩层界面识别结果统计

Table
 

2　 Statistics
 

of
 

identification
 

results
 

of
 

rock
 

formations
 

with
 

different
 

parameters
 

and
 

algorithms

方法 参数
界面 1 /

cm
误差 1 /

cm
界面 2 /

cm
误差 2 /

cm
用时 /

s

变点检测

算法

钻速 5. 14 0. 14 11. 82 1. 32 354

声压级 4. 84 -0. 16 12. 95 2. 45 3

转速 2. 63 -2. 37 4. 78 -5. 72 246

扭矩 2. 81 -2. 19 3. 51 -6. 99 27

Strucchange
模型

钻速 5. 14 0. 14 11. 82 1. 32 95

声压级 4. 58 -0. 42 12. 62 2. 12 2

转速 2. 73 -2. 27 4. 56 -5. 94 42

扭矩 2. 90 -2. 10 5. 68 -4. 82 3

决策树

算法

钻速 5. 14 0. 14 11. 82 1. 32 2

声压级 4. 76 -0. 24 13. 70 3. 20 2

转速 2. 80 -2. 20 4. 78 -5. 72 2

扭矩 2. 90 -2. 10 3. 51 -6. 99 2

2　 煤岩界面识别

2. 1　 试验点工程地质概况

汪家寨煤矿 P41106 回风巷埋深约 400
 

m,设
计长度为 1

 

350
 

m,采用炮掘方式开挖,采用梯形断

面和全锚索支护。 煤层平均倾角和厚度分别为

15°和 7. 0
 

m,巷道顶板上方煤层厚度在 3 ~ 4
 

m 之

间,采用放顶煤开采,煤层上方为厚度 1. 8 ~ 3. 0
 

m
的泥质粉砂岩。 在巷道掘进期间利用上述方法进

行煤岩界面识别,依次判断顶板上方煤层厚度,为
回采期间放顶煤开采工艺优化提供参考。
2. 2　 现场数据采集

在距回采侧煤壁约 1. 5
 

m 处,沿掘进方向每隔

1
 

m 施工 1 个长度约 6
 

m 的钻孔,钻孔垂直于巷道

顶板。 根据实验室试验结果可知,相比于转速和扭

矩,以钻速和声压级作为输入参数时对岩层界面识

别准确性更高。 因此,现场采集的随钻参数为声压
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级和位移数据(可以计算得到钻速)。 现场随钻参

数采集时,锚杆钻机底部扎进底板约 10
 

cm,钻机

底部周围要求平整,然后放置激光反射板。 将位移

传感器固定在锚杆钻机气腿上,声压记录仪通过通

用串行总线(Universal
 

Serial
 

Bus,USB)直接与电脑

相连。 调节位移传感器和声压记录仪,确保其处于

正常工作状态。 当第 1 根钻杆钻进完成时,暂停数

据的采集,第 2 根钻杆开始钻进时恢复数据采集。
现场采集了 5 个钻孔,然后通过钻孔成像仪观

察煤岩界面位置,对比分析钻孔成像结果与笔者所

提方法的识别结果。 现场获取的钻进参数曲线如

图 6 所示。 从图 6 中可以看出,第 5 根和第 6 根钻

杆钻进用时明显较长。 钻头位移数据存在许多异

常值,且在同种岩层中钻进时,位移曲线的斜率也

在不断波动, 在此采用式 ( 2) 对位移数据进行

处理。
2. 3　 煤岩界面识别结果

根据采集的数据,分别以声压级和处理后的钻

速数据为输入参数,用决策树算法识别煤岩界面。
以 1 号钻孔数据为例,用钻速作为输入参数时得到

的结果如图 7 所示。 从结果中可知,t = 119. 149
 

s
时,钻头所处位置为煤岩界面,从采集数据中可知

此时刻对应的煤岩界面位置为 3. 59
 

m。 同样,用声

压级作为输入参数,得到的煤岩界面位置为 2. 97
 

m。
通过钻孔成像观测,煤岩界面位置约位于 3. 63

 

m。

图 6　 位移、声压级和钻速曲线

Fig. 6　 The
 

curves
 

of
 

displacement,
 

sound
 

pressure
 

level,
 

and
 

penetration
 

rate

图 7　 决策树算法下煤岩界面识别结果

Fig. 7　 Identification
 

result
 

of
 

coal-rock
 

interface
 

using
 

decision
 

tree
 

algorithm

　 　 对于 1 号钻孔,不同参数下煤岩界面如图 8 所

示,图 8 中不同颜色代表不同岩层。 钻速中虽明显

存在一些很大波动值,但对煤岩界面识别结果仍比

声压级准确。
统计分析基于 5 个钻孔随钻参数识别的煤岩

界面位置与钻孔成像得到的煤岩界面位置,结果见

表 3。 从表 3 可以看出,以声压级作为输入参数

时,煤岩界面位置识别误差明显较大,平均误差达

0. 38
 

m;以钻速作为输入参数时,煤岩界面位置识

别平均误差为 0. 04
 

m。

表 3　 煤岩界面识别结果统计

Table
 

3　 Statistics
 

of
 

coal-rock
 

interface
 

identification
 

results

钻孔编号
钻孔成像

结果 / m

输入参数

声压级 / m 钻速 / m

1 3. 63 2. 97 3. 59

2 3. 53 3. 92 3. 47

3 3. 71 4. 00 3. 74

4 3. 66 3. 31 3. 68

5 3. 55 3. 76 3. 60
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图 8　 不同参数下煤岩界面识别结果

Fig. 8　 Coal-rock
 

interface
 

identification
 

results
 

under
 

different
 

parameters

3　 典型复合顶板岩层界面识别

3. 1　 试验地点及复合顶板特征

老母坡矿 3 号煤层最大厚度为 1. 95
 

m,最小

厚度为 1. 4
 

m,平均厚度为 1. 8
 

m,不含夹矸,结构

简单,赋存基本稳定。 该煤层为近水平煤层,平均

倾角为 4°,普氏系数在 2 ~ 3 之间。 3 号煤层顶板

依次为炭质泥岩(0. 45
 

m)、细粒砂岩(1. 0
 

m)、砂
质泥 岩 ( 2. 3

 

m )、 细 粒 砂 岩 ( 1. 7
 

m ) 和 泥 岩

(0. 35
 

m),属于典型的复合顶板岩层。
3. 2　 钻孔方案及数据采集过程

在巷道顶板施工 3 排钻孔,每排 2 个钻孔,总
计 6 个钻孔,每个钻孔钻进 6 根钻杆(钻杆长度为

1
 

m),钻孔的间排距为 1
 

m。 为方便描述,对钻孔

进行编号,第 1 个数字表示该钻孔所处的排,第 2
个数字表示钻孔在该排的位置。 例如,编号为 12
的钻孔表示第 1 排第 2 个钻孔。 钻进期间采集位

移和声压级参数,钻进结束后,用 CXK12( A)矿用

本安型钻孔成像仪进行钻孔成像。 部分处理后的

位移和钻速曲线如图 9 所示。
3. 3　 岩层界面识别结果

以钻速为输入参数,通过决策树算法得到的岩

层界面自动识别结果如图 10 所示,图 10 中不同颜

色代表不同岩层。 从图 10 中可以看出,虽然 11 号

钻孔和 12 号钻孔间距仅 1
 

m,但 2 个钻孔处柱状

图存在明显差别。 对于 12 号钻孔的柱状图,人眼

观察法难以看出有明显岩层分界面。 但从 2 个钻

孔的岩层界面随钻识别结果看,二者岩层界面随钻

识别结果一致性较强。

图 9　 处理后的位移和钻速曲线

Fig. 9　 Displacement
 

and
 

penetration
 

rate
 

curves
 

after
 

processing

图 10　 岩层界面自动识别结果

Fig. 10　 Automatic
 

identification
 

result
 

of
 

rock
 

layer
 

interface
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　 　 为进一步分析各岩层界面位置识别精度,统计

分析 6 组钻孔数据。 以钻孔成像为依据,人工确定

各岩层界面位置。 然后,统计分析岩层界面位置随

钻识别结果与人工识别结果(表 4)。

表 4　 各岩层界面位置识别统计结果

Table
 

4　 Statistical
 

results
 

of
 

identification
 

of
 

interface
 

position
 

of
 

each
 

rock
 

layer m
钻孔编号 探测方法 界面 1 界面 2 界面 3 界面 4 界面 5

11
人工法 0. 46 — 2. 73 3. 68 4. 78

随钻探测 0. 84 2. 06 3. 00 3. 52 4. 75

12
人工法 0. 43 — 2. 90 3. 80 4. 80

随钻探测 0. 71 1. 84 2. 97 3. 60 4. 50

21
人工法 0. 39 — 2. 60 3. 46 5. 17

随钻探测 0. 83 1. 91 2. 93 3. 35 4. 35

22
人工法 0. 35 1. 68 3. 15 3. 86 4. 83

随钻探测 0. 68 1. 88 3. 14 3. 71 4. 73

31
人工法 0. 35 2. 33 3. 02 3. 96 4. 85

随钻探测 0. 68 2. 39 2. 95 3. 75 4. 71

32
人工法 0. 33 2. 38 3. 15 3. 52 4. 94

随钻探测 0. 81 2. 29 3. 08 3. 71 4. 83

平均误差 随钻探测 0. 37 0. 12 0. 14 0. 17 0. 25

对于 界 面 1, 随 钻 探 测 法 的 平 均 误 差 达

0. 37
 

m。 对于界面 2,前 3 个钻孔人工法难以确定

岩层界面位置,随钻探测法平均误差为 0. 12
 

m。
对于界面 3,从钻孔成像中可以明显看到该界面位

置,随钻探测法结果平均误差为 0. 14
 

m。 对于界

面 4,随钻探测法结果平均误差为 0. 17
 

m。 对于界

面 5,11 号钻孔和 21 号钻孔人工法确定的岩层界

面位置与随钻探测结果偏差较大,其余钻孔偏差

较小。

4　 讨　 论

实验室试验朝上钻进锚固孔,采用煤矿常用的

两翼型 PDC 钻头 B19 六棱柱钻杆。 朝上钻进和朝

下钻进原理相同,都是利用钻进参数的响应特征进

行岩层特性识别,但 2 种钻进模式下钻进参数响应

特征不同,以钻速为例,相比于朝下钻进,朝上钻进

的钻速快、振幅小、振动频率慢。 在数据处理方法

方面,采用了指数加权损失函数处理原始数据,并
提出了钻速处理方法。

已有的研究多聚焦于岩石力学参数、岩石类型

随钻预测,采用的算法多为有监督机器学习法。 本

文主要聚焦于岩层界面随钻识别,采用的算法主要

是统计学中无监督算法。 相比于多数实验室研究,

文中除了在实验室进行试验外,还在 2 种典型煤矿

地质条件进行测试,对岩层界面随钻识别推广应用

具有一定促进作用。
理论上当钻机推力一定时,扭矩越大,转速越

高。 在扭矩一定情况下,当岩层强度增加至一定值

时,切削深度极小,主要依靠钻头底部与孔底岩石

摩擦做功,此时转速可能较大。 相反,当岩层强度

较低时,切削深度增加,转速反而会出现下降的情

况。 在同种岩层中钻进时,转速和扭矩的响应特征

理论上不变,在岩层界面处,由于岩石力学性能差

异,转速和扭矩的响应特征会发生突变,该突变特

征为岩层界面识别提供了依据。
在不同应力水平或异常情况下,随钻参数会出

现明显差别。 当不同岩层处于同一区域时被认为

受到的应力大小一样,因此,对物理力学性能不同

的岩层进行岩层界面随钻识别是可行的。 本文研

究重点聚焦于巷道顶板岩层界面识别,通常认为锚

固孔钻进深度范围内岩层应力相同,主要依据岩层

物理力学性能差异进行岩层界面识别。 当岩层受

到不同应力大小作用时,应力会对岩层界面随钻识

别效果产生影响。
理论上当不同岩层力学性能差异越大时,岩层

界面识别的精度越高,这也是煤岩界面现场识别精

度高的主要原因。 实际钻进过程中,钻机稳定性、
岩层各向异性等因素对岩层界面识别精度有很大

影响,现场测试表明,单一钻进参数对复合顶板岩

层界面识别精度明显变差。 因此,研究多个随钻参

数在不同影响因素下钻进响应特征,提出多参数岩

层界面随钻识别方法,是下一步研究的主要方向。

5　 结　 论

(1)
 

自主研制了随钻参数采集装置,可以实现

位移、转速、扭矩和声压级的实时采集,为煤矿巷道

顶板岩层特征随钻识别提供了数据基础。
(2)

 

采用指数加权损失函数处理位移数据得

到钻速数据方法,可以更好地反映钻进参数变化趋

势,且可以自动过滤异常值,为岩层界面随钻识别

奠定了基础。
(3)

 

相比于变点检测模型和 Strucchange 模

型,采用决策树算法岩层界面识别速度最快。 相比

于声压级、转速和扭矩,以钻速为输入参数,用决策

树算法可以快速准确识别煤岩界面位置。 现场试

验结果表明,用该算法得到的煤岩界面位置平均误

差为 0. 04
 

m;对于典型复合顶板岩层,岩层界面随

钻识别准确性相对较低。
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