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摘　 要:露天矿山地表变形预测及灾害风险评价的研究对提高灾害预警准确性及制定安全防治

措施具有重要意义。 近年来,大数据、云计算、人工智能方法的发展,为传统矿山的智能化转型提

供了技术支持。 从矿山地表变形智能感知、预测及灾害风险评价 3 个方面概述了露天矿山地表

变形灾害的研究进展;梳理了矿山地表变形智能监测技术,选择智能监测手段需要从数据精度、
安装成本、后处理速度等多角度权衡;从传统变形预测方法与智能优化方法的结合、机器学习、深
度学习 3 个方面总结了地表变形预测的智能建模方法;概述了矿山变形灾害典型风险评价方法

的思路。 基于当前研究进展,探讨了存在的问题及未来发展趋势,助力矿山灾害防治的智能

升级。
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Abstract:Research
 

on
 

the
 

prediction
 

and
 

disaster
 

risk
 

assessment
 

of
 

surface
 

deformation
 

in
 

open-pit
 

mines
 

serves
 

to
 

improve
 

the
 

accuracy
 

of
 

disaster
 

warning
 

and
 

make
 

safety
 

control
 

decisions.
 

In
 

recent
 

years,
 

the
 

development
 

of
 

big
 

data,
 

cloud
 

computing
 

and
 

artificial
 

intelligence
 

methods
 

has
 

provided
 

technical
 

support
 

for
 

the
 

intelligent
 

transformation
 

of
 

traditional
 

mines.
 

This
 

paper
 

summarizes
 

the
 

re-
search

 

progress
 

of
 

surface
 

deformation
 

hazards
 

in
 

open-pit
 

mines
 

from
 

three
 

aspects:
 

intelligent
 

percep-
tion,

 

intelligent
 

prediction
 

and
 

disaster
 

risk
 

evaluation
 

of
 

surface
 

deformation.
 

Specifically,
 

by
 

revie-
wing

 

the
 

intelligent
 

monitoring
 

technologies
 

of
 

mine
 

surface
 

deformation,
 

this
 

study
 

indicates
 

that
 

the
 

choice
 

of
 

intelligent
 

monitoring
 

methods
 

should
 

factor
 

in
 

data
 

accuracy,
 

installation
 

cost
 

and
 

post-pro-
cessing

 

speed,
 

reviews
 

the
 

intelligent
 

modeling
 

methods
 

of
 

surface
 

deformation
 

prediction
 

regarding
 

the
 

methodological
 

combination
 

of
 

traditional
 

deformation
 

prediction
 

and
 

intelligent
 

optimization,
 

machine
 

learning
 

and
 

deep
 

learning,
 

and
 

summarizes
 

the
 

mechanism
 

behind
 

the
 

typical
 

risk
 

assessment
 

method
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of
 

mine
 

deformation
 

hazards.
 

Based
 

on
 

the
 

current
 

research
 

progress,
 

we
 

discuss
 

the
 

existing
 

research
 

gap
 

and
 

prospects
 

of
 

intelligent
 

prediction
 

and
 

disaster
 

risk
 

assessment
 

of
 

surface
 

deformation
 

in
 

open-
pit

 

mines
 

so
 

as
 

to
 

offer
 

reference
 

to
 

the
 

intelligent
 

upgrading
 

of
 

mine
 

disaster
 

prevention
 

and
 

control.
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　 　 矿山开采活动是地质灾害的主要诱因。 地质

灾害不仅会造成人员伤亡,还会导致严重的经济损

失。 矿山生产设备作业、降雨及爆破震动等外界因

素的影响,会导致采空区上覆岩体、边坡岩体中岩

层结构发生变化,进而引起地表变形。 若没有实施

有效的监控防治措施,变形作用的累积发育将增加

地质灾害发生的风险。 由矿山地表变形演化形成

的典型地质灾害形式包括地表塌陷、边坡滑坡等。
近年来,露天矿山塌陷、滑坡事故频发。 地表塌陷

和边坡滑坡灾害会对矿山设施造成严重破坏,并威

胁工作人员的生命安全,矿山企业将遭受巨大经济

损失。 塌陷及滑坡灾害会影响矿区及周围地区建

构筑物的稳定性,易引起地表水流失,造成农田

水资源匮乏、地表干涸荒芜,最终诱发严重的生

态环境破坏。 因此,进行矿山地表变形预测及灾

害风险评价研究至关重要。 智能化方法的发展

为解决以上问题提供了新的思路,可减少对矿山

背景知识的依赖,能够充分挖掘监测数据中蕴含

的灾害演化知识,近年来受到了越来越多的关

注。 相关研究成果对制定灾害防治措施、促进矿

山安全高效生产及经济环境可持续性发展,具有

重要的指导意义。
鉴于此,本文重点关注露天矿山地表变形智能

预测与灾害风险评价研究成果。 从矿山地表变形

智能感知、预测及灾害风险评价 3 个方面,总结最

新研究进展,探讨未来发展方向,以期为推动矿山

智能转型升级、保障矿产资源安全高效开采及制定

灾害防治措施提供助力。

1　 矿山地表变形智能感知

矿山地表变形监测是保障矿区安全生产的重

要技术手段,监测数据直观反映了岩体变形规律和

趋势,为探究地表变形机理、进行矿山灾害预警及

制定安全防治措施提供数据支持。 目前,露天矿山

地表变形智能监测技术,主要包括全球导航卫星系

统(GNSS)、全球定位系统( GPS)、地基雷达、三维

激光扫描、无人机航测、卫星遥感、多维协同监测和

基于物联网的联网联测等。
随着全球卫星导航定位技术的发展,GNSS /

GPS 成为露天矿山地表变形监测的重要方法,可实

现对变形的实时、动态监测,并给出每个测点的三

维空间坐标。 该方法测量精度高,能够全天候提供

监测信息,适用于短临和应急期的风险较大变形灾

害的及时分析和研判。 郝文杰等[1] 利用 GPS 地表

变形定期监测桩及拉绳变形实时监测仪,对西北地

区厚黄土覆盖层急倾斜煤层地表沉陷变形进行监

测。 张建[2] 采用北斗 / GPS 一机多天线技术对红

树粱煤矿首采工作面实现了地表变形动态智能监

测,具有毫米级精度,推动了矿山岩移观测站的无

人化、智能化建设进程。
地基雷达在露天矿山大范围边坡位移监测中

应用广泛,可实现大面积变形测量。 该监测手段可

以获取地表微小变形,其监测数据形式为位移、速
度或加速度。 李卫鹏等[3] 分析了露天煤矿边坡监

测地基雷达技术,为地基雷达的选型提供技术指

导。 尹永明等[4] 根据南方季节环境特点,分析了

当露天矿山处于复杂气象条件时,地基合成孔径雷

达对边坡监测的适用性。
三维激光扫描技术运用高速激光获得被测物

体表面的三维空间位置信息,并利用大量空间位置

数据,进行三维空间图像的实时再现,具备了精准、
数字化的优点。 杜祎玮等[5] 综述了三维激光扫描

技术在矿山领域的应用现状,该技术在矿山采空

区、边坡、开采沉陷等方面均有广泛的应用,指出

三维激光扫描结合其他新型测量技术及点云数

据的分析挖掘,是实现矿山数字化、智能化的重

要保障。 然而,三维激光扫描设备价格昂贵,数
据处理速度较慢,且测量精度会受植被覆盖等因

素的影响。
无人机搭载摄影测量设备,可获取高分辨率数

字航片,实现地表形态获取。 罗伟等[6] 利用无人

机搭载遥感设备对煤矿采区地表形变进行周期监

测,通过高速摄像获取受采动影响矿区的地表移动

情况,实现地表形变图像数据的智能采集,具有作

业效率高、维护成本低、感知精度高、系统易维护等

优势,适用于小范围重点变形区域的高频次动态监

测。 张俊阳等[7]对无人机遥感技术在矿区地表沉

陷观测的应用进行了综述,认为该技术能够提高地
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表沉陷监测精度,是矿山智能化发展的重要驱动

力。 但是,其测量精度受无人机飞行高度、矿山地

形、植被覆盖和大气等因素影响,且数据处理过程

较复杂。
随着遥感技术的发展,基于卫星的合成孔径雷

达干涉测量( InSAR)等技术越来越多地应用于大

范围、长周期连续的地表变形监测,适用于地表变

形灾害隐患的早期识别,有助于灾害趋势的中长期

监测及危险性评价[8] 。 YANG 等[9]综述了近 20 年

来 InSAR 技术在采矿变形监测领域的应用。
ELKAMALI 等[10] 针对不同土地覆盖类型,讨论了

不同 InSAR 技术用于探测地表变形的优缺点,给
出了相应的最佳监测方法。 卫星遥感的测量精度

受多种因素影响:地形因素会造成几何畸变,植被

覆盖会造成低相干,大气因素会造成延迟等。 为提

高传统 InSAR 技术的监测精度,进一步发展了差

分雷达干涉测量( DInSAR)技术[11-12] 及小基线子

集 SBAS
 

InSAR 时间序列技术[13-14] 。
单一监测手段在测量效率及精度上均有待提

升,且获得的监测信息为一维线性或二维平面结

果。 为满足矿山智能化需求,矿山监测技术正向

“天-空-地”多维协同监测方向快速发展,形成了

天(光学遥感)、空(无人机航测)、地(全球导航卫

星系统、裂缝计等)三维立体协同监测体系,为进

行长时间、多尺度地表形变监测及变化特征分析提

供技术保障[14-15] 。
多源化传感设备为矿山监测信息的全方位收

集创造了可能。 物联网技术的发展为多源异构监

测设备的实时互联互通提供了有效手段。 通过网

络将不同设备连接,可实现多源信息的集成整合,
为基于多源信息融合的矿山灾害智能监测防控奠

定基础[16] 。

2　 矿山地表变形智能预测

露天矿地表变形灾害的主要形式为滑坡和塌

陷。 滑坡灾害的发生主要是由于斜坡上的岩体或

土体受某些原因的影响,其应力应变状态发生变

化,从而使斜坡产生变形和地面开裂。 当岩体的剪

应力大于主滑带的抗剪切强度时,岩土在重力作用

下沿某一薄弱结构面整体下滑[17] 。 滑坡的主要影

响因素包括岩石性质、水文地质条件、降雨等。 塌

陷灾害主要是因为当采空区体积达到一定规模或

受地压影响发生缓慢蠕变时,顶板和岩柱无法支撑

上部覆盖层载荷,岩层内部的原始应力平衡状态受

到破坏,导致采场的顶板岩层垮落断裂,最终在地

压的作用下造成采空区坍塌[18] 。 变形作为滑坡与

塌陷过程中岩体失稳破裂最直观的表现,是灾害预

测过程中最为关键的监测信息之一。 分析挖掘监

测信息中蕴含的变形演化规律,预测地表变形趋

势,对于提高灾害预测精度、保障矿山安全生产意

义显著。 近年来,基于智能方法的矿山地表变形预

测研究,受到了越来越多的关注。
2. 1　 基于理论公式与智能优化算法融合的预测

方法

基于理论公式的变形预测方法相对成熟,已有

较多的研究成果。 以概率积分法为基础的理论函

数计算模型,为地表变形预测提供了有效方法。 该

方法假设地表和岩层产生的移动事件随机发生,并
将采区划分为无限个微小单元,通过确定所有单元

对地表移动变形影响的概率密度函数,基于积分运

算获得整个监测区的地表移动和变形情况。 近年

来,智能优化方法已成功应用于概率积分法的参数

反演,包括遗传算法( GA)、模拟退火算法、狮群算

法、狼群算法、蝙蝠算法、粒子群优化算法( PSO)、
人工鱼群算法、入侵杂草优化算法等[19-22] 。 这些

智能优化算法的引入提高了模型的抗干扰能力和

参数反演精度。 为了进一步解决概率积分模型应

用范围有限、预测效果差、精度低等问题,不同学者

提出了新的预测函数形式[23-26] ,这些模型同样可

结合智能优化算法进行参数反演。 JIANG 等[24] 针

对淮南市古桥南矿沉降盆地的三维变形监测,提出

了一种基于改进动态概率积分法的变形预测模型,
并引入 GA 获得最优参数以提升预测精度,解决了

面对地表发生大梯度变形时传统预测方法精度低

的问题。 DING 等[26] 提出了一种新的基于 Boltz-
mann 函数的开采沉陷预测模型,该模型引入 PSO
及蛙跳智能算法,反演动态预测模型参数的全局最

优解,提高了矿山采空区地表位移变形的预测

精度。
基于理论公式的变形预测方法使矿山灾害的

分析具有一定的理论依据,与智能优化算法的融合

使该类方法的性能得到进一步提升。 但该类方法

需要收集大量前期资料数据,用于证实理论或经验

公式的可用性。 同时,动态理论公式形式有待进一

步开发完善,以便提高矿山灾害分析的实时性。
2. 2　 基于机器学习的变形预测方法

基于机器学习的变形预测方法,是指通过机器

学习算法挖掘监测数据中蕴含的灾害前兆规律,以
此建立灾害预测模型。 随着矿山监测数据量的不

断增大,常规的多元线性回归分析等统计方法可能
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导致建模精度不足,无法精确表征监测数据、影响

因素与灾害间的非线性关系。 机器学习方法受到

了越来越多的关注,为矿区地表变形预测提供了更

加有效的工具。 露天矿山地表塌陷、边坡滑坡等地

表变形灾害受多种因素影响,包括水文、地质等内

在因素,以及气象、采矿活动等外界诱因。 目前,利
用机器学习算法进行矿区地表变形预测的核心思

路,是建立影响因素与变形监测数据之间的非线性

映射关系模型。
支持向量回归(SVR)方法在矿山地表变形预

测中应用广泛,当影响因素和变形监测数据均比较

少时,该方法仍能保持良好的建模性能。 LI 等[27]

根据安徽淮南煤田开采沉陷区的变形特征,构建了

以 SBAS-InSAR 监测技术为基础的灰色支持向量

回归(GM-SVR)地表变形预测模型。 为了进一步

提高建模精度,智能优化算法( PSO、GA 等) 常用

于优化 SVR 的参数,以获得更好的模型性能。 刘

小生等[28] 、华国威等[29] 分别利用基于自适应惯性

权重的 PSO 算法及生物地理学优化算法获得较好

的 SVR 参数,提高了矿山边坡、尾矿坝变形的预测

精度。 DU 等[30] 依据变形和影响因素(水文、地

质、气象等)之间的关系,结合支持向量机( SVM)
与基于量子行为的 PSO 算法构建了地表变形预测

模型,并与 SVM、GA-SVM、PSO-SVM 等常用变形

预测模型进行性能比较,结果表明,提出的模型在

矿山边坡地表变形中具有更好的预测精度。
用于变形预测的另一种典型的机器学习方法

为神经网络。 已有多种形式的神经网络模型用于

矿山地表变形预测,如极限学习机(ELM) [31] 、反向

传播(BP)神经网络[32] 、径向基函数( RBF) [33] 、多
层感知机( MLP) [34] 等。 宁永香等[31] 基于地表变

形规律及降雨、温度、开采活动等因素的耦合影响,
提出了一个由 PSO 优化的 ELM 露天矿边坡地表

变形预测模型。 该模型将地表变形与其影响因素

数据作为输入,引入 PSO 优化模型参数,提升了边

坡地表变形模型的预测精度。 陈兰兰等[32] 针对越

堡露天矿边坡,使用 BP 神经网络模型进行变形预

测,利用 GA 优化 BP 神经网络参数,提高了边坡变

形的预测精度。
基于机器学习的变形预测方法,其精度在一定

程度上取决于影响因素选取的准确性。 然而,影响

因素的确定过程严重依赖于研究人员对地表变形

机理的理解,对操作人员的专业背景知识要求很

高。 想要在短时间内准确确定所有地表变形影响

因素,并收集相应的数据信息,进而建立影响因素

与变形间的关系模型十分困难。
2. 3　 基于深度学习的变形预测方法

针对 InSAR、GNSS、GPS 等监测技术获取的大

量地表变形时序监测数据,深度学习为探究地表变

形规律及建立动态变形预测模型提供了新的思

路[35] 。 该领域典型的深度学习方法包括循环神经

网络(RNN)、长短时记忆神经网络( LSTM)、门控

递归单元(GRU)及时间卷积网络(TCN)。 RNN 利

用隐藏层节点间的连接使隐藏层的输入不仅与输

入层的输出有关,同时与上一时刻隐藏层的输出也

有关系,从而实现记忆功能。 该方法能够挖掘不同

时刻变形量对未来变形的影响作用,体现变形作用

的累积效应,但是存在梯度爆炸和梯度消失问题。
CHEN 等[36]研究了基于 RNN 的滑坡预测方法,将
降雨和累积位移作为模型输入,使用 Elman 网络结

构作为时间序列预测模型,使用 GA 对模型的初始

权重与偏差进行优化以寻找最佳参数,对累计位移

进行预测,结果表明,该模型对于滑坡预测效果优

秀,精确度高。 LSTM 通过引入记忆单元,即遗忘

门、输入门和输出门来实现不同时刻数据的差异化

传递,有效捕捉长序列间的关联。 该方法解决了传

统时序数据模型梯度爆炸、消失的问题,然而,单元

门生成的结果需要占据大量内存,当变形时间序列

很长时,这种问题尤为突出。 成睿等[37] 针对云南

省玉溪市大红山矿区 InSAR 地表形变时序数据,
使用变分模态分解(VMD)方法将矿山地表监测变

形数据分解,并将得到的分解项与降雨作为模型输

入,同时利用麻雀优化算法寻找 LSTM 模型的最优

参数,提高了地表变形预测的可靠性与精准度。
GRU 使用门控机制实现记忆,包括更新门和重置

门。 该方法不再包括输出门,结构及计算更加简

单。 ZHANG 等[38]针对 GPS 滑坡累积位移监测数

据,提出了一种基于 GRU 模型的阶梯滑坡位移动

态预测方法,使用移动平均法将位移数据分解为趋

势位移和周期位移,趋势位移采用三次多项式进行

预测,周期位移通过 GRU 模型预测,提升了该地区

位移预测精度,为实现逐级滑坡位移预测提供了参

考。 TCN 采用了卷积核共享机制,不再包含控制

门,添加了残差结构。 该方法能够实现并行处理,
避免了梯度爆炸和消失问题,内存占用更小。 LUO
等[39]针对 GPS 监测数据,提出了基于 TCN 的滑坡

位移预测模型,该模型与 ARIMA、SVR 和 LSTM 相

比,预测精度更高。
雷达等监测手段获取的地表变形一般表现为

累积位移量。 近年来,对累计位移进行预测的相关
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研究,其思路是首先进行加性分解,之后分别预测

再整合,以此降低预测难度。 具体可分为趋势项、
周期项和随机项,其中趋势位移由地质条件决定,
代表位移的长期增加;周期位移依赖于采矿活动、
降雨等外界因素;随机项代表不确定性的影响。 矿

山地表变形累积位移预测方法见表 1。 另外,不同

时间点的输入数据对变形预测的重要性不同,通过

引入注意力机制使关键信息在位移预测中的作用

更加突出,进一步提高了变形预测精度[36,
 

40-41] 。
除了挖掘监测点变形数据的时序相关性,若能充分

利用不同监测点间的空间关联,将极大提升预测模

型的精度[42-43] 。 以采空区地表塌陷为例,地表变

形随时间呈现出不同的变形特征,在空间上可划分

出不同的发展阶段。 相邻地表变形阶段中,按时间

发展的先后顺序可以分为超前发展区与滞后发展

区。 当监测点所处位置的力学参数和地质条件十

分相近时,在空间上相互关联的超前发展区中监测

点的地表变形规律,很可能与滞后发展区监测点下

一阶段的变形规律一致。 因此,监测点的空间关联

性对地表变形预测至关重要。

表 1　 矿山地表变形累积位移预测方法

Table
 

1　 Cumulative
 

displacement
 

prediction
 

method
 

of
 

mine
 

surface
 

deformation

任务 方法

位移分解

移动平均法[38,44]

变分模态分解算法(VMD) [37,
 

45]

经验模态分解(EMD) [46]

改进的 EMD[47-48]

局部均值分解(LMD) [39]

趋势项预测

自回归模型[47]

多项式拟合[38,
 

45,
 

49]

指数平滑创新状态空间模型[39]

周期项预测
LSTM[47] 、GRU[48,

 

50] 、CNN 与 GRU

结合模型[49] 、TCN[39,
 

45]

随机项预测 生成对抗网络[47]

利用现场监测数据进行变形预测能够实时表

征外界条件变化对岩体力学特性的影响作用,具有

高时效性,然而,该类方法也具有如下局限性。
(1)

 

预测模型中致灾机理不明确。 基于现场

监测的变形预测方法,通过挖掘监测数据中蕴含的

灾害演化规律建立的变形预测模型,难以直观表征

变形灾害的致灾机理和前兆规律。
(2)

 

建模精度受数据质量的影响大。 数据挖

掘方法有效的前提是拥有足够多的数据且精度满

足要求。 矿山作业环境差,大量开采扰动使监测数

据的不确定性增加,数据因干扰而失真,甚至发生

中断,监测数据质量的下降将严重影响建模精度。
(3)

 

监测范围有限,无法全面覆盖。 地表变形

灾害从初始的变形作用累积到灾害发生,一般需要

很长时间。 受矿山监测环境、生产计划及成本的制

约,在矿山安置大量监测点是不现实的。 传统的矿

山监测传感大多采用点式监测,仅能反映监测点极

小范围内的变形趋势。 因此,监测范围的大小及监

测点的选取严重影响后续灾害分析的性能。
综上所述,现场监测数据中虽蕴含着地表变形

灾害的演化规律,但是利用现场监测数据挖掘灾害

发生的前兆信息,以此建立精确的变形预测模型仍

存在巨大挑战。

3　 矿山变形灾害风险评价

矿山变形灾害风险评价对及时制定并实施防

治措施,避免灾害影响范围进一步扩大具有重要意

义。 常用的风险评价方法可总结为 5 类,分别为模

糊综合评价、事故树 / 故障树、D-S 证据理论、数值

模拟分析及机器学习方法。
3. 1　 基于模糊综合评价的风险分析

基于模糊综合评价的风险分析是通过收集多

种地表变形灾害的影响因素,确定不同影响因素与

灾害的权重关系,建立灾害评价系统,最终实现不

同影响因素下地表变形灾害风险的综合评价。 在

这一过程中,模糊理论用于表征影响关系本身具备

的不确定性。 王霄等[51]整合了坡度、高程、地表起

伏度、剖面曲率、降雨量、环境温湿度、土壤温湿度

与植被等多源监测信息,对滑坡进行了风险评价,
采用结合层次分析法( AHP)与加权平均型模糊算

子得到了模糊综合评价矢量,用最大隶属度对应的

评价集进行判断。 陈学军等[52] 综合考虑 6 种岩溶

塌陷影响因素,采用 AHP 与模糊聚类分析相结合

的方法,对古丹铅锌矿岩溶塌陷的危险性进行分

区,为塌陷灾害防治提供参考。 ZHANG 等[53] 针对

河南东部永城矿区的矿井塌陷问题,基于模糊数学

原理和 AHP 建立了跨矿区煤矿塌陷危险性评价系

统,该研究结果可为该地区农田复垦、城镇规划、自
然环境恢复等提供参考。

基于模糊综合评价的风险分析,能够综合考虑

不同风险评价指标、全面反映各评价因素间的相对

重要程度、有效处理模糊及不确定性信息。 然而,
该方法对前期资料数据收集要求较高,当信息缺乏

时,无法实现有效评价。 同时,在确定各指标权重
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时存在一定主观倾向,也为评价结果带来了偏差。
3. 2　 基于事故树 / 故障树的风险评价

基于事故树 / 故障树的风险评价方法是将灾害

本身视为事故或故障,通过建立事故树 / 故障树模

型,梳理变形灾害影响因素及重要度,直观展示灾

害成因,表征灾害事故的发生机制。 崔益源等[54]

针对采空区塌陷风险评价缺少定量指标的问题,提
出了基于模糊概率量化的事故树风险评价模型,定
量分析了采空区塌陷风险,并通过灵宝市某金矿 2
号采空区的坍塌实例,验证了模型的有效性。 任高

峰等[55]通过事故树法分析引发采空区塌陷事故的

主要影响因素及重要度,在此基础上提出了基于变

权和模糊模式识别的采空区危险性评价方法。 井

文君等[56]建立了盐岩地表沉陷故障树模型,得到

地表塌陷的 14 种模式和 10 个基本影响因素,利用

模糊综合评价法对湖北云应盐矿进行了风险预测。
基于事故树 / 故障树的风险评价方法能够直观

反映各因素、各指标间的因果依赖关系,直接追溯

灾害成因。 但该方法对操作人员的专业背景知识

要求较高,需要比较全面地理解灾害事故的发生

机制。
3. 3　 基于 D-S 证据理论的风险评价

基于 D-S 证据理论的风险评价方法与模糊综

合评价相似。 首先,该方法需要确定评价结果等

级;其次,建立评价指标体系并将其作为证据信息;
再次,确定各指标在各评价等级上的质量分配函数

及各指标权重;最后,依据合成规则获得最终的综

合风险决策。 董宪久[57] 利用 D-S 证据理论解决

采空区稳定性评价问题,从现场地质调查、室内岩

石力学试验、数值模拟结果、采空区监测传感信息

等方面提取证据指标体系,利用熵权法确定指标权

重,最终对盘龙铅锌矿进行了稳定性评价。 徐卫亚

等[58]利用边坡表面位移、变形破坏特征与深度位

移建立了滑坡定性定量评价指标体系,基于云模型

获得监测时序数据的隶属度,通过改进的 D-S 证

据理论对滑坡进行了风险评价。 ZHANG 等[59] 针

对地下开采引起的地表变形灾害,基于 D-S 证据

理论和 BP 神经网络算法提出了矿山地质灾害风

险评价与管理方法,利用多传感器数据集成技术对

研究区变形体进行调查,评价研究区变形体的变形

和破坏特征,并对重点边坡进行风险评估和脆弱性

评价。
基于 D-S 证据理论的风险评价方法在实施思

路上简单明了,可直接利用理论公式实现多源信息

融合操作,改进的理论公式可以有效解决决策冲突

问题。 然而,如何客观合理地确定各风险评价指标

的质量分配函数及权重,是该方法的难点。
3. 4　 基于数值模拟的风险评价

基于数值模拟的风险评价方法是根据岩石力

学机理、各种监测设备数据、采场地质条件等建立

研究区域的三维数值模型,分析岩层在自然因素及

采矿活动影响下的移动规律与破坏模式,并凭借建

立的模型对监测区进行模拟,计算应力、应变和位

移场等,依此实现监测区的风险评价[60] 。 GAO
等[61] 以贵州某煤矿地表危岩为研究对象,对煤矿

采空区上方的危岩塌陷进行了研究。 通过现场考

察和数值模拟分析危岩的稳定性,采用 UDEC 软件

模拟煤层开采对地表危岩塌陷的影响,分析了采空

区上覆岩层的移动规律、移动变形规律以及危岩破

坏模式。 XU 等[62] 基于对石膏采空区整体结构和

分布特征的调查,结合现场选取的岩体力学参数,
分析采空区矿柱、顶板和上覆岩层的厚度条件,建
立采空区数值模型,并利用 FLAC3D 进行数值模

拟,基于不同程度的变形对采空区稳定性进行了评

价。 牛小明等[63]为分析石人嶂矿莲花山采空区稳

定性及山体滑坡影响范围,构建了莲花山数值模拟

模型,通过山体剖面位移和安全系数评价了采空区

稳定性,借助滚石的回弹高度和滚落距离确定了塌

陷影响范围。 为进一步提高数值模拟方法的准确

性,监测数据可用于修正数值模拟模型,实现模型

更新,最终使理论模型与现实矿山环境更加贴近。
JIA 等[64]针对露天铁矿浅层采空区稳定性评价问

题,提出了一种修正的 Mathews 稳定性图,将位移

监测数据与数值模型相结合,得到了采空区随时间

的变形和破坏规律,将该方法成功应用于某露天铁

矿浅层采空区塌陷风险评价中。
基于数值模拟的风险评价方法能够充分表征

岩石力学机理,直观反映岩层移动及变形规律。 然

而,用于数值模拟的模型往往源于对现实场景的简

化,无法完全表征现场实际情况,造成模拟结果与

现实情况存在较大差异。 同时,数值模拟模型无法

对现场情况进行实时动态表征。
3. 5　 基于机器学习的风险评价

基于机器学习的风险评价方法,是利用机器学

习方法建立地表变形影响因素与灾害风险等级间

的关系。 在获取地表变形影响因素后,即可利用关

系模型进行灾害风险评价。 罗周全等[65] 针对某矿

岩溶地表塌陷现象,构建了基于 BP 神经网络的地

表塌陷风险评价模型,输入为地下水位、给水度、覆
盖层厚度、贮水系数、渗透系数与降雨量等 11 个岩
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溶塌陷影响因素,输出为岩溶塌陷风险等级。 李国

辉等[66] 总结整理了 6 个边坡稳定性影响因素,利
用 BP 神经网络模型建立影响因素与安全系数、稳
定状态间的关系模型,引入粗糙集进行属性约简,
提高了算法效率和预测精度。 DENG 等[67] 结合可

变遗忘因子与 ELM 建立边坡几何力学参数(地质

强度指数、扰动因子、岩石材料常数、单轴抗压强

度、岩体单位重量、坡高、坡角)与安全系数之间的

关系模型。 其他机器学习算法还包括 SVM 及其改

进模型[68-69] 、决策树[70-71] 及其集成学习方法(随

机森林和极端梯度增强[72] )、贝叶斯模型[73-75] 等。
相关研究比较分析了不同机器学习方法的性

能[76-77] ,为边坡灾害风险评价建模方法的优选提

供了支持。 在进行灾害影响因素确定时,常利用特

征选择(如粗糙集[78] )或特征提取方法(如主成分

分析[79] ) 确定灾害主控因素, 减少冗余因素的

干扰。
基于机器学习的风险评价方法的建模思路相

对简单,对操作人员的岩石力学专业背景知识要求

较低。 但是,该方法精度受数据质量影响较大,无
法有效表征致灾过程及演化机理。

4　 未来研究方向

(1)
 

灾害全生命周期演化模式提取。 如何利

用数据挖掘、机器学习方法充分挖掘地表变形演化

过程中不同区域时序监测数据中的时空关联关系,
表征地表变形灾害不同变形阶段的演化特征,建立

灾害全生命周期演化模式库,对于理解地表塌陷、
边坡滑坡等矿山地表变形灾害本质,实现灾害防控

至关重要。
(2)

 

基于迁移学习的矿山灾害分析。 若能够

有效辨识与目标矿山具有强关联、高相似性的矿区

案例并利用其监测信息资源,则能够为揭示目标矿

山变形灾害全生命周期演化规律、提高灾害预测预

警的准确性提供巨大支持。 多源域迁移学习为解

决监测数据缺乏、预测模型精度低的问题提供了解

决方法。 该方法为充分利用相似矿区变形灾害案

例、探究目标矿山灾害全生命周期演化规律,提供

了新的思路。
(3)

 

基于机理与数据融合的矿山地表变形预

测及风险评价。 基于岩石变形机理的数值模拟方

法与基于监测数据挖掘的预测方法,有各自的优势

和局限性,两者的有效结合能够取长补短,为提高

矿山灾害分析准确性提供解决方案。 研究人员已

对现场监测数据与数值模拟相结合的预测方法进

行了初步探索[80] ,结合的一般思路是,利用监测数

据优化数值模拟模型并对模拟结果进行验证,若两

者差距较大,则对数值模拟模型进行参数及边界条

件的调整,通过反馈调节实现数值模拟模型的优化

与更新。 针对矿山地表变形灾害,变形监测信息目

前更多用于验证数值模型变形预测的准确性,而基

于变形误差的数值模型参数及边界条件的调节操

作,仍大部分根据经验确定。 地表变形监测信息与

数值模拟模型中,参数及边界条件的对应关系还未

明确,现场监测数据与数值模拟的结合方式有待进

一步探索。
(4)

 

矿山灾害风险评价的不确定性表征、定量

评价与动态更新。 在建立风险评价模型过程中,一
部分研究成果初步整合了专家知识及工程经验,但
现有方法在不确定性处理、定量评价和动态更新等

方面仍存在不足。 贝叶斯网络方法在不确定知识

表达与推理方面具备优势,能够有效融合背景机理

知识和数据信息,已广泛应用于矿山突水[81] 、瓦斯

突出[82] 、矿井火源[83] 风险评价。 因此,该方法在

矿山地表变形灾害风险评价方面具有潜在的技术

优势。

5　 结　 论

(1)
 

矿山地表监测技术为变形灾害的预测及

风险评价提供了数据支持。 在传统变形监测方法

的基础上,GPS、卫星遥感、三维激光扫描、无人机

航测等矿山地表变形智能化监测技术的发展提升

了监测水平,具有高空间分辨率、低成本、实时化、
数字化、高精度、高效率等特征,实现了大范围空间

信息的智能化采集。
(2)

 

结合监测数据及岩石力学机理分析水文

地质、外界环境、采矿活动等众多因素的影响差异,
建立矿山地表变形灾害全生命周期演化模式库,对
于探究灾害演化过程规律、认识变形灾害本质、建
立灾害预测及风险评价模型、进行灾害预警及制定

安全防治措施至关重要。 迁移学习能够充分利用

相似矿山灾害案例,为探究目标矿山变形灾害演化

规律提供了重要资源。
(3)

 

从理论公式与智能优化算法的结合、机器

学习、深度学习 3 个方面总结了智能方法在矿山地

表变形预测领域的应用,指出了利用现场监测数据

进行变形预测的局限性。 现场监测与数值模拟相

结合的矿山地表变形预测方法,可有效结合 2 种方

法的优势,实现更加精确地灾害分析。
(4)

 

针对矿山地表变形灾害风险评价问题,梳
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理了目前常用的矿山地表变形灾害风险评价方法,
包括模糊综合评价、事故树 / 故障树、数值模拟分

析、D-S 证据理论及机器学习方法。 现有矿山地

表变形灾害风险评价方法在不确定性处理、定量评

价和动态更新等方面存在不足。
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