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Stress wave attenuation and damage patterns of
shale under methane/oxygen explosion
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Abstract ; Methane in-situ explosion fracturing of shale is a revolutionary technology that utilizes the
methane analyzed from shale reservoirs and the input combustion aids to carry out explosion reactions,
thereby forming a three-dimensional fracture network in in-situ fracturing of shale reservoirs. This study
conducted explosion experiments to investigate the variation patterns of key parameters of explosion
(i. e. explosion pressure, explosion speed, rise time of peak pressure). We obtained the attenuation
patterns of stress wave in shale reservoir through dimensionless analysis. We used the finite element
software ANSYS/LS-DYNA to establish models of different working conditions for analyzing the number
of cracks and damage evolution patterns of shale caused by explosion. Results show that; 1) The pres-
sure during the methane/oxygen explosion is about 30 times the initial pressure. The rise time of peak
pressure is 85 ps. 2) Peak stress of the stress wave and the specific distance in the shale reservoir un-

der the explosion load are exponentially related. 3) The increase in loading rate could form multiple
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cracks around the explosion hole. 4) Compared with open hole completion, the presence of casing re-

duces the pressure near the wellbore wall, causing type I cracks to extend along the initial fracture di-

rection. The perforation length after extension increasesby 47% compared to the original length.

Key words : methane ; shale; explosion fracturing; numerical simulation
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Fig.2 Typical pressure—time curve in methane/oxygen explosion
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Fig.3 Explosion pressure and velocity in methane/oxygen explosion
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Fig. 4 Rise time and loading curve in methane/oxygen explosion
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