Citation: | GUO Yonghong, WANG Guowei, ZHANG Yingchun, et al. Characterization of brittleness property for deep coalbed methane reservoirs based on ultrasonic test data[J]. Journal of Mining Science and Technology, 2025, 10(1): 137-150. DOI: 10.19606/j.cnki.jmst.2024942 |
To explore the brittleness and its anisotropy of deep coalbed methane reservoir, the effects of parameters such as the total content of organic matter and clay and the preferred orientation degree, equivalent porosity and pore aspect ratio on the brittleness of deep coalbed methane reservoirs were analyzed. Firstly, 20 primary structural coal samples from No.8 coal seam of Taiyuan Group were collected to carry out microscopic observation, physical property experiments and ultrasonic velocity experiments. Then an anisotropic rock physics model of the deep coalbed methane reservoir was constructed based on the experiment results and microscopic observation. Finally, a two-dimensional brittle rock physics template is established. The results show that the brittleness of coal samples has obvious direction dependence, and the brittleness of parallel and perpendicular lamination directions are correlated. The difference of Young's modulus between parallel and perpendicular laminations is positively correlated with the difference of velocity, and the anisotropy of Poisson's ratio and brittleness index is negatively correlated with the velocity anisotropy parameter. The validation of experimental data shows that the petrophysical model constructed in the paper can effectively portray the influence of coal components and structure on the brittleness characteristics of the reservoir.
[1] |
温声明, 周科, 鹿倩. 中国煤层气发展战略探讨—以中石油煤层气有限责任公司为例[J]. 天然气工业, 2019, 39(5): 129-136.
WEN Shengming, ZHOU Ke, LU Qian. A discussion on CBM development strategies in China based upon a case study of PetroChina Coalbed Methane Co., Ltd. [J]. Natural Gas Industry, 2019, 39(5): 129-136.
|
[2] |
秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1): 125-136.
QIN Yong, SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica, 2016, 37(1): 125-136.
|
[3] |
徐凤银, 王成旺, 熊先钺, 等. 鄂尔多斯盆地东缘深部煤层气成藏演化规律与勘探开发实践[J]. 石油学报, 2023, 44(11): 1764-1780.
XU Fengyin, WANG Chengwang, XIONG Xianyu, et al. Evolution law of deep coalbed methane reservoir formation and exploration and development practice in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(11): 1764-1780.
|
[4] |
王锦昌, 刘刚, 张辉, 等. 深部煤层地下气化选址研究—以东胜气田J148地区为例[J]. 矿业科学学报, 2024, 9(2): 156-166. DOI: 10.19606/j.cnki.jmst.2024.02.003
WANG Jinchang, LIU Gang, ZHANG Hui, et al. Study on site selection of underground gasification in deep coal seam: a case study of J148 area in Dongsheng Gas Field[J]. Journal of Mining Science and Technology, 2024, 9(2): 156-166. DOI: 10.19606/j.cnki.jmst.2024.02.003
|
[5] |
朱光辉, 季洪泉, 米洪刚, 等. 神府深部煤层气大气田的发现与启示[J]. 煤田地质与勘探, 2024, 52(8): 12-21.
ZHU Guanghui, JI Hongquan, MI Honggang, et al. Discovery and implications of the large deep coalbed methane in Shenfu gas field[J]. Coal Geology & Exploration, 2024, 52(8): 12-21.
|
[6] |
BA J, HU P, TAN W, et al. Brittle mineral prediction based on rock physics modelling for tight oil reservoir rocks[J]. Journal of Geophysics and Engineering, 2021, 18(6): 970-983. DOI: 10.1093/jge/gxab062
|
[7] |
ZHAI M, LI L, CHEN B, et al. Investigation on the anisotropy of mechanical properties and brittleness characteristics of deep laminated sandstones[J]. Engineering Fracture Mechanics, 2023, 289: 109386. DOI: 10.1016/j.engfracmech.2023.109386
|
[8] |
杨国梁, 毕京九, 张志飞, 等. 被动围压下层理角度对页岩动态强度及耗能的影响[J]. 矿业科学学报, 2021, 6(2): 188-195. DOI: 10.19606/j.cnki.jmst.2021.02.006
YANG Guoliang, BI Jingjiu, ZHANG Zhifei, et al. The influence of the bedding angle under passive confining pressure on the dynamic strength and energy consumption of shale[J]. Journal of Mining Science and Technology, 2021, 6(2): 188-195. DOI: 10.19606/j.cnki.jmst.2021.02.006
|
[9] |
赵阳, 周宏伟, 刘迪, 等. 深部煤层顶板砂岩弹性模量与孔隙度关系模型研究[J]. 矿业科学学报, 2019, 4(3): 204-212. http://kykxxb.cumtb.edu.cn/article/id/215
ZHAO Yang, ZHOU Hongwei, LIU Di, et al. The study of the relation model between elastic modulus and porosity in deep coal seam roof sandstone[J]. Journal of Mining Science and Technology, 2019, 4(3): 204-212. http://kykxxb.cumtb.edu.cn/article/id/215
|
[10] |
BOURBIE T, COUSSY O, ZINSZNER B. Acoustics of porous media[M]. Paris Editions Technip, 1987: 10-11.
|
[11] |
WINKLER K W, MURPHY Ⅲ W F. Acoustic velocity and attenuation in porous rocks[M]. Washington America: American Geophysical Union, 1995: 20-34.
|
[12] |
MOSKA R, KASZA P, MASLOWSKI M. Rock anisotropy and brittleness from laboratory ultrasonic measurements in the service of hydraulic fracturing[J]. Acta Geodynamica et Geomaterialia, 2018, 1(189): 67-76. http://www.zhangqiaokeyan.com/journal-foreign-detail/0704022402551.html
|
[13] |
WU H, ZHANG P, DONG S, et al. Brittleness index analysis of coal samples[J]. Acta Geophysica, 2019, 67: 789-797. DOI: 10.1007/s11600-019-00291-5
|
[14] |
吴海波, 黄亚平, 张平松, 等. 基于等效介质理论的煤层气储层岩石物理建模与应用[J]. 地球物理学报, 2021, 64(6): 2184-2198.
WU Haibo, HUANG Yaping, ZHANG Pingsong, et al. Rock physics model for coal-bed methane reservoir and its application based on equivalent medium theory[J]. Chinese Journal of Geophysics (in Chinese), 2021, 64(6): 2184-2198.
|
[15] |
LIU X, ZHANG Z, GE Z, et al. Brittleness evaluation of saturated coal based on energy method from stress-strain curves of uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2021, 54: 3193-3207. DOI: 10.1007/s00603-021-02462-7
|
[16] |
龚飞, 王国伟, 康武江, 等. 沁水盆地构造煤弹性各向异性及裂缝特征研究[J]. 地球物理学报, 2024, 67(9): 3544-3555.
GONG Fei, WANG Guowei, KANG Wujiang, et al. Study on elastic anisotropy and fracture characteristic of tectonic coals in Qinshui Basin[J]. Chinese Journal of Geophysics, 2024, 67(9): 3544-3555.
|
[17] |
GOKTAN R M, GUNES Y N. A new methodology for the analysis of the relationship between rock brittleness index and drag pick cutting efficiency[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2005, 105(10): 727-733. http://reference.sabinet.co.za/webx/access/journal_archive/0038223X/3094.pdf
|
[18] |
罗冰, 文华国, 廖义沙, 等. 川东北地区二叠系吴家坪组二段页岩储层特征及有利区分布[J]. 岩性油气藏, 2025, 37(1): 1-12.
LUO Bing, WEN Huaguo, LIAO Yisha, et al. Shale reservoirs characteristics and favorable areas distribution of the second member of Permian Wujiaping Formation in northeastern Sichuan Basin[J]. Lithologic Reserviors, 2025, 37(1): 1-12.
|
[19] |
HEIDARI M, KHANLARI G R, TORABI-KAVEH M, et al. Effect of porosity on rock brittleness[J]. Rock Mechanics and Rock Engineering, 2014, 47: 785-790. DOI: 10.1007/s00603-013-0400-0
|
[20] |
GONG F, DI B, WEI J, et al. Experimental investigation of the effects of clay content and compaction stress on the elastic properties and anisotropy of dry and saturated synthetic shale[J]. Geophysics, 2018, 83(5): 195-208. DOI: 10.1190/geo2017-0555.1
|
[21] |
桂俊川, 马天寿, 陈平. 横观各向同性页岩岩石物理模型建立—以龙马溪组页岩为例[J]. 地球物理学报, 2020, 63(11): 4188-4204.
GUI Junchuan, MA Tiantao, CHEN Ping. Rock physics modeling of transversely isotropic shale: an example of the Longmaxi formation in the Sichuan basin[J]. Chinese Journal of Geophysics, 2020, 63(11): 4188-4204.
|
[22] |
ZHANG L, BA J, CARCIONE J M, et al. A rock-physics model to determine the pore microstructure of cracked porous rocks[J]. Geophysical Journal International, 2020, 223(1): 622-631. DOI: 10.1093/gji/ggaa327
|
[23] |
AVSETH P, JOHANSEN T A, BAKHORJI A, et al. Rock-physics modeling guided by depositional and burial history in low-to-intermediate-porosity sandstones[J]. Geophysics, 2014, 79(2): 115-121. DOI: 10.1190/geo2013-0226.1
|
[24] |
GUO Q, LUO C, GRANA D. Bayesian linearized rock-physics amplitude-variation-with-offset inversion for petrophysical and pore-geometry parameters in carbonate reservoirs[J]. Geophysics, 2023, 88(5): 273-287. DOI: 10.1190/geo2022-0671.1
|
[25] |
ZHANG J J, YIN X Y, GU Y P, et al. Sandstone reservoir rock physics modeling and time-lapse seismic analysis[J]. Journal of Applied Geophysics, 2024, 222: 105318. DOI: 10.1016/j.jappgeo.2024.105318
|
[26] |
GUO Q, BA J, LUO C et al. Seismic rock physics inversion with varying pore aspect ratio in tight sandstone reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109131. DOI: 10.1016/j.petrol.2021.109131
|
[27] |
程绩伟, 张峰, 李向阳. 四川盆地含裂缝海相页岩储层正交各向异性岩石物理建模[J]. 地球科学, 2024, 49(1): 299-312.
CHENG Jiwei, ZHANG Feng, LI Xiangyang. Orthorhombic Anisotropic Rock Physics Modeling for Fractured Marine Shale Reservoir in Sichuan Basin[J]. Earth Science, 2024, 49(1): 299-312.
|
[28] |
ZHANG F, LI X, QIAN K. Estimation of anisotropy parameters for shale based on an improved rock physics model, part 1: theory[J]. Journal of Geophysics and Engineering, 2017, 14(1): 143-158. DOI: 10.1088/1742-2140/14/1/143
|
[29] |
HUANG Y, WEI M, MALEKIAN R, et al. CBM reservoir rock physics model and its response characteristic study[J]. IEEE Access, 2017, 5: 5837-5843. http://www.onacademic.com/detail/journal_1000039973839510_5cd3.html
|
[30] |
WU H, GUO J, JI G, et al. Estimating the anisotropy of the vertical transverse isotropy coal seam by rock physics model-based inversion[J]. Geophysical Prospecting, 2024, 72(5): 2064-2075. DOI: 10.1111/1365-2478.13470
|
[31] |
GONG F, ZOU G, ZHANG Z J, et al. An anisotropic rock physics modeling for the coalbed methane reservoirs and its applications in anisotropy parameter prediction[J]. Journal of Applied Geophysics, 2024, 225: 105381. DOI: 10.1016/j.jappgeo.2024.105381
|
[32] |
CAO Y, ZHANG J, ZHANG X, et al. Micro-fractures in coal induced by high pressure CO2 gas fracturing[J]. Fuel, 2022, 311: 122148. DOI: 10.1016/j.fuel.2021.122148
|
[33] |
YURIKOV A, LEBEDEV M, PERVUKHINA M et al. Ultrasonic velocity measurements on thin rock samples: Experiment and numerical modeling[J]. Geophysics, 2018, 83(2): 47-56.
|
[34] |
GONG F, DI B, ZENG L, et al. The elastic properties and anisotropy of artificial compacted clay samples[J]. Geophysics, 2021, 86(1): 1-15. http://www.researchgate.net/publication/345553626_The_elastic_properties_and_anisotropy_of_artificial_compacted_clay_samples
|
[35] |
SAURABH S, HARPALANI S. Anisotropy of coal at various scales and its variation with sorption[J]. International Journal of Coal Geology, 2019, 201: 14-25. DOI: 10.1016/j.coal.2018.11.008
|
[36] |
JI G, LI H, WEI J, et al. Preliminary study on wave field and dispersion characteristics of channel waves in VTI coal seam media[J]. Acta Geophysica, 2019, 67: 1379-1390. DOI: 10.1007/s11600-019-00326-x
|
[37] |
MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook[M]. Cambridge England: Cambridge University, 2020: 21-80.
|
[38] |
CHEADLE S P, BROWN R J, LAWTON D C, et al. Orthorhombic anisotropy: A physical seismic modeling study[J]. Geophysics, 1991, 56(10): 1603-1613. DOI: 10.1190/1.1442971
|
[39] |
THOMSEN L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10): 1954-1966. DOI: 10.1190/1.1442051
|
[40] |
GAUTAM R, WONG R C K. Transversely isotropic stiffness parameters and their measurement in Colorado shale[J]. Canadian Geotechnical Journal, 2006, 43(12): 1290-1305. DOI: 10.1139/t06-083
|
[41] |
QUEROL X, WHATELEY M K G, FERNANDEZ-TURIEL J L, et al. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey[J]. International Journal of Coal Geology, 1997, 33(3): 255-271. DOI: 10.1016/S0166-5162(96)00044-4
|
[42] |
STAN-KIECZEK I. The study of the elastic properties of carbonate rocks on a base of laboratory and field measurements[J]. Acta Montan. Slovaca, 2016, 21: 76-83. http://rebus.us.edu.pl/bitstream/20.500.12128/3029/1/Stan-Kleczek_The_study_of_the_elastic_properties_of_carbonate_rocks.pdf
|
[43] |
于正军, 张军华, 周昊, 等. 准噶尔盆地东南缘页岩油储层脆性预测与评价[J]. 吉林大学学报: 地球科学版, 2024, 54(5): 1711-1723.
YU Zhengjun, ZAHNG Junhua, ZHOU Hao, et al. Brittleness prediction and evaluation of shale oil reservoir in southeastern margin of Junggar Basin[J]. Journal of Jilin University : Earth Science Edition, 2024, 54(5): 1711-1723.
|
[44] |
GUO Z, CHAPMAN M, LI X. Exploring the effect of fractures and microstructure on brittleness index in the Barnett Shale[M]. Society of Exploration Geophysicists: SEG Technical Program Expanded Abstracts, 2012: 1-5.
|
[45] |
张辉, 徐珂, 李珺, 等. 三维地震数据模型驱动下的超深全层系复杂构造地应力建模[J/OL]. 地质通报, 1-18[2024-12-30]. http://kns.cnki.net/kcms/detail/11.4648.P.20241012.1119.002.html.
ZHANG Hui, XU Ke, LI Jun, et al. 3D full-layer Geomechanical modeling of complex structures in the ultra-deep system driven by 3D seismic data[J/OL]. Geological Bulletin of China, 1-18[2024-12-30]. http://kns.cnki.net/kcms/detail/11.4648.P.20241012.1119.002.html.
|
[46] |
GONG F, DI B, WEI J, et al. Experimental investigation of mechanical compaction on the physical and elastic properties of synthetic shales[J]. Journal of Applied Geophysics, 2019, 161: 139-152. DOI: 10.1016/j.jappgeo.2018.12.011
|
[47] |
BACKUS G E. Long wave elastic anisotropy produced by horizontal layering[J]. Journal of Geophysical Research, 1962, 67(11): 4427-4440. DOI: 10.1029/JZ067i011p04427
|
[48] |
BOND W L. The mathematics of the physical properties of crystals[J]. The Bell System Technical Journal, 1943, 22(1): 1-72. DOI: 10.1002/j.1538-7305.1943.tb01304.x
|
[49] |
HORNBY B E, SCHWARTZ L M, HUDSON J A. Anisotropic effective-medium modeling of the elastic properties of shales[J]. Geophysics, 1994, 59(10): 1570-1583. DOI: 10.1190/1.1443546
|
[50] |
GONG F, HUANG A, KANG W, et al. The influence of lamination and fracture on the velocity anisotropy of tectonic coals[J]. Geophysics, 2024, 89(6): MR355-MR365. DOI: 10.1190/geo2024-0033.1
|
[51] |
ZHAO M, JIN Y, LIU X, et al. Characterizing the complexity assembly of pore structure in a coal matrix: Principle, methodology, and modeling application[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12): e2020JB020110. DOI: 10.1029/2020JB020110
|
[52] |
BANDYOPADHYAY K. Seismic anisotropy: geological causes and its implications to reservoir geophysics[M]. San Francisco America: Stanford University, 2009: 33-39.
|
[53] |
李勇, 高爽, 吴鹏, 等. 深部煤层气游离气含量预测模型评价与校正—以鄂尔多斯盆地东缘深部煤层为例[J]. 石油学报, 2023, 44(11): 1892-1902.
LI Yong, GAO Shuang, WU Peng, et al. Evaluation and correction of prediction model for free gas content in deep coalbed methane: a case study of deep coal seams in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(11): 1892-1902.
|
[1] | LIN Qiang, GUAN Huadong, WANG Guanshi, CHENG Jinshan. Research on the strength prediction model of Na based bentonite filling body based on ultrasonic transverse wave testing[J]. Journal of Mining Science and Technology, 2024, 9(3): 426-434. DOI: 10.19606/j.cnki.jmst.2024.03.011 |
[2] | ZHOU Tao, CHEN Changpeng, ZHANG Yangyang, YIN Xuehan, CHEN Jiarong. Experimental study on the influence of seawater corrosion on the physical and mechanical properties and microstructural failure behavior of sandstone[J]. Journal of Mining Science and Technology, 2024, 9(2): 178-189. DOI: 10.19606/j.cnki.jmst.2024.02.005 |
[3] | Gao Wanli, Zhao Jingtao, Wang Huawei. Rock physics experiment and rock physical modeling of hot dry rock under high temperature[J]. Journal of Mining Science and Technology, 2023, 8(6): 758-767. DOI: 10.19606/j.cnki.jmst.2023.06.003 |
[4] | Zuo Jianping, Li Ying, Li Hongjie, Yu Meilu, Wu Zuoqi, Liu Jiashun. The model of spatial analogous hyperboloid for three-dimensional rock strata movement in mining engineering[J]. Journal of Mining Science and Technology, 2023, 8(1): 1-14. DOI: 10.19606/j.cnki.jmst.2023.01.001 |
[5] | Li Yingjie, Wang Bingqian, Zuo Jianping, Xue Dongjie, Liu Dejun. Modified Hoek-Brown criterion model for laminated rock based on fracture mechanics[J]. Journal of Mining Science and Technology, 2022, 7(4): 481-489. DOI: 10.19606/j.cnki.jmst.2022.04.010 |
[6] | Liu Bingquan, Li Liyun, Wei Mengxi, Wang Bonan, Wang Zhidong. A study on relationships between measured crustal stresses and depth based on spherical shell model[J]. Journal of Mining Science and Technology, 2022, 7(4): 474-480. DOI: 10.19606/j.cnki.jmst.2022.04.009 |
[7] | Gong Yufei, Zhu Guowei, Jiang Yupu, Shi Dongjing. Experimental study on the proportion of similar materials for different geological structures of coal seams[J]. Journal of Mining Science and Technology, 2022, 7(3): 267-274. DOI: 10.19606/j.cnki.jmst.2022.03.001 |
[8] | Sun Xiaoming, Han Qiang, Miao Chengyu, Yuan Shuai, Miao Peiyang, Lu Hao. Modeling test of deep buried tunnel in soft and broken rock based on non-contact monitoring methods[J]. Journal of Mining Science and Technology, 2017, 2(3): 235-242. |
[9] | Guo Jingang, Wang Weiguang, Yang Zengqiang, He Fulian, Zhao Yongqiang, Zheng Zheng. Research of coal pillar inducing rock burst in L-shaped zone of working face and prevention technology[J]. Journal of Mining Science and Technology, 2017, 2(1): 49-57. |
[10] | Zuo Jianping, Chen Yan, Sun Yunjiang, Jiang Guanghui, Wang Jintao. Investigation on whole failure nonlinear model for deep coal-rock combined bodies[J]. Journal of Mining Science and Technology, 2017, 2(1): 17-24. |