Citation: | LI Xiaoyu, FAN Weiqiang, LIU Yi, et al. Mine exogenous fire monitoring method using the fusion of infrared visual features[J]. Journal of Mining Science and Technology, 2025, 10(1): 116-124. DOI: 10.19606/j.cnki.jmst.2024930 |
In order to solve the problems of high false positive and false negative rates of external fire monitoring in complex mine environments, a monitoring algorithm using infrared visual feature fusion was proposed. Firstly, the Local Contrast Measure (LCM) model for infrared small target detection was improved to enhance the saliency of early-stage fire targets, thereby segmenting out suspected fire areas. Then, by analyzing the visual features of exogenous fires and major interfering heat sources in thermal infrared image sequences under different surveillance scenarios, the salient features of fires with strong anti-interference ability were preferred. Next, fire salient feature extraction methods and similarity estimation strategies were optimized to obtain the main visual features of suspected fire areas in the thermal infrared image sequences and construct a fire feature vector. Finally, by establishing a feature vector set and constructing a mine exogenous fire detection model using Support Vector Machine (SVM), the proposed algorithm was experimentally validated. The results show that the proposed algorithm realizes exogenous fire monitoring in different scenarios, as well as in remote and early stages, with accuracy and detection rates of 96.93 % and 96.24 %, respectively, and a false detection rate of 2.56 %. Compared to the described comparison algorithms, the proposed method has better improvements in the accuracy, false alarm rate, and leakage alarm rate of fire monitoring.
[1] |
邓军, 李鑫, 王凯, 等. 矿井火灾智能监测预警技术近20年研究进展及展望[J]. 煤炭科学技术, 2024, 52(1): 154-177.
DENG Jun, LI Xin, WANG Kai, et al. Research progress and prospect of mine fire intelligent monitoring and early warning technology in recent 20 years[J]. Coal Science and Technology, 2024, 52(1): 154-177.
|
[2] |
孙继平, 范伟强. 基于视频图像的瓦斯和煤尘爆炸感知报警及爆源判定方法[J]. 工矿自动化, 2020, 46(7): 1-4, 48.
SUN Jiping, FAN Weiqiang. Gas and coal dust explosion perception alarm and explosion source judgment method based on video image[J]. Industry and Mine Automation, 2020, 46(7): 1-4, 48.
|
[3] |
范伟强, 李晓宇, 刘毅, 等. 基于可见光视觉特征融合的矿井外因火灾监测方法[J]. 矿业科学学报, 2023, 8(4): 529-537. DOI: 10.19606/j.cnki.jmst.2023.04.009
FAN Weiqiang, LI Xiaoyu, LIU Yi, et al. Mine external fire monitoring method using the fusion of visible visual features[J]. Journal of Mining Science and Technology, 2023, 8(4): 529-537. DOI: 10.19606/j.cnki.jmst.2023.04.009
|
[4] |
DENG L, CHEN Q, HE Y H, et al. Fire detection with infrared images using cascaded neural network[J]. Journal of Algorithms & Computational Technology, 2019, 13(12): 1-11.
|
[5] |
范伟强, 李晓宇, 翁智, 等. 基于双域和ILoG-CLAHE的矿井红外图像增强算法[J]. 工矿自动化, 2023, 49(1): 99-108.
FAN Weiqiang, LI Xiaoyu, WENG Zhi, et al. Mine infrared image enhancement algorithm based on dual domain and ILoG-CLAHE[J]. Journal of Mine Automation, 2023, 49(1): 99-108.
|
[6] |
孙继平, 范伟强. 矿井红外热成像远距离测温误差分析与精确测温方法[J]. 煤炭学报, 2022, 47(4): 1709-1722.
SUN Jiping, FAN Weiqiang. Error analysis and accurate temperature measurement method of infrared thermal imaging long-distance temperature measurement in underground mine[J]. Journal of China Coal Society, 2022, 47(4): 1709-1722.
|
[7] |
辛颖, 李禹洁, 邢美净. 基于红外图像的森林凋落物阴燃火灾探测[J]. 消防科学与技术, 2018, 37(1): 61-64. DOI: 10.3969/j.issn.1009-0029.2018.01.021
XIN Ying, LI Yujie, XING Meijing. Forest litter smoldering fire detection based on infrared image[J]. Fire Science and Technology, 2018, 37(1): 61-64. DOI: 10.3969/j.issn.1009-0029.2018.01.021
|
[8] |
张航, 赵敏, 王璐, 等. 基于等效椭圆特征的红外热像仪火灾检测[J]. 消防科学与技术, 2018, 37(11): 1563-1567. DOI: 10.3969/j.issn.1009-0029.2018.11.035
ZHANG Hang, ZHAO Min, WANG Lu, et al. Infrared thermal imager fire detection based on equivalent elliptical feature[J]. Fire Science and Technology, 2018, 37(11): 1563-1567. DOI: 10.3969/j.issn.1009-0029.2018.11.035
|
[9] |
邹富墩, 孙骞. 舰艇火灾超早期探测红外热检测技术研究[J]. 消防科学与技术, 2020, 39(4): 503-506. DOI: 10.3969/j.issn.1009-0029.2020.04.021
ZOU Fudun, SUN Qian. Research on infrared thermal detection technology for ultra-early detection system of warship fire disaster[J]. Fire Science and Technology, 2020, 39(4): 503-506. DOI: 10.3969/j.issn.1009-0029.2020.04.021
|
[10] |
冯加宇, 唐洪, 贺涛, 等. 基于红外热成像的煤矿输送带火灾监测预警技术研究[J]. 煤炭技术, 2016, 35(12): 280-282.
FENG Jiayu, TANG Hong, HE Tao, et al. Infrared image monitoring and early-warning technology of coal mine conveyor belt fire[J]. Coal Technology, 2016, 35(12): 280-282.
|
[11] |
SUN B, XU Z D. A multi-neural network fusion algorithm for fire warning in tunnels[J]. Applied Soft Computing, 2022, 131: 109799. DOI: 10.1016/j.asoc.2022.109799
|
[12] |
孙继平, 孙雁宇, 范伟强. 基于可见光和红外图像的矿井外因火灾识别方法[J]. 工矿自动化, 2019, 45(5): 1-5, 21.
SUN Jiping, SUN Yanyu, FAN Weiqiang. Mine exogenous fire identification method based on visible light and infrared image[J]. Industry and Mine Automation, 2019, 45(5): 1-5, 21.
|
[13] |
孙继平, 孙雁宇. 矿井火灾监测与趋势预测方法研究[J]. 工矿自动化, 2019, 45(3): 1-4.
SUN Jiping, SUN Yanyu. Research on methods of mine fire monitoring and trend prediction[J]. Industry and Mine Automation, 2019, 45(3): 1-4.
|
[14] |
桂小红, 游建平, 苏树君, 等. 通风换气对煤矿井下电缆巷火灾影响分析[J]. 矿业科学学报, 2021, 6(3): 348-355. DOI: 10.19606/j.cnki.jmst.2021.03.012
GUI Xiaohong, YOU Jianping, SU Shujun, et al. Analysis of the influence of ventilation on fire in underground cable roadway of coal mine[J]. Journal of Mining Science and Technology, 2021, 6(3): 348-355. DOI: 10.19606/j.cnki.jmst.2021.03.012
|
[15] |
段佳磊, 梁运涛, 贾宝山, 等. 阻燃输送带火灾早期温度变化与烟气成分研究[J]. 矿业科学学报, 2024, 9(2): 135-143. DOI: 10.19606/j.cnki.jmst.2024.02.001
DUAN Jialei, LIANG Yuntao, JIA Baoshan, et al. Temperature variation and smoke composition of flame-retardant conveyor belt in the early stage of friction accident[J]. Journal of Mining Science and Technology, 2024, 9(2): 135-143. DOI: 10.19606/j.cnki.jmst.2024.02.001
|
[16] |
范伟强. 矿井外因火灾双光谱图像监测方法研究[D]. 北京: 中国矿业大学(北京), 2022.
FAN Weiqiang. Study on dual-spectral image monitoring method of mine external fire[D]. Beijing: China University of Mining and Technology, Beijing, 2022.
|
[17] |
胡亮, 杨德贵, 王行, 等. 基于改进MEANSHIFT的可见光低小慢目标跟踪算法[J]. 信号处理, 2022, 38(4): 824-834.
HU Liang, YANG Degui, WANG Xing, et al. Visible light low-small-slow-target tracking algorithm based on improved MEANSHIFT[J]. Journal of Signal Processing, 2022, 38(4): 824-834.
|
[18] |
PHILIP CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581. DOI: 10.1109/TGRS.2013.2242477
|
[19] |
徐宏宇, 续婷. 一种基于颜色和纹理的优化SVM火灾识别方法[J]. 沈阳航空航天大学学报, 2021, 38(4): 54-60. DOI: 10.3969/j.issn.2095-1248.2021.04.007
XU Hongyu, XU Ting. A color/texture-based improved SVM for fire recognition[J]. Journal of Shenyang Aerospace University, 2021, 38(4): 54-60. DOI: 10.3969/j.issn.2095-1248.2021.04.007
|
[20] |
黄景雨. 林火虚警源红外成像特征建模及检测方法研究[D]. 成都: 电子科技大学, 2019.
HUANG Jingyu. Study on infrared imaging feature modeling and detection method of forest fire false alarm source[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
|
[21] |
王亚, 张宝峰. 基于显著性检测的红外森林火灾监测系统[J]. 消防科学与技术, 2018, 37(12): 1700-1703. DOI: 10.3969/j.issn.1009-0029.2018.12.029
WANG Ya, ZHANG Baofeng. Infrared forest fire monitoring system based on saliency detection[J]. Fire Science and Technology, 2018, 37(12): 1700-1703. DOI: 10.3969/j.issn.1009-0029.2018.12.029
|
[22] |
YANG Z K, WANG T, BU L P, et al. Training with augmented data: GAN-based flame-burning image synthesis for fire segmentation in warehouse[J]. Fire Technology, 2022, 58(1): 183-215. DOI: 10.1007/s10694-021-01117-x
|
[23] |
DING H J, GONG F M, GONG W J, et al. Human activity recognition and location based on temporal analysis[J]. Journal of Engineering, 2018: 4752191.
|
[24] |
范伟强, 刘毅. 基于自适应小波变换的煤矿降质图像模糊增强算法[J]. 煤炭学报, 2020, 45(12): 4248-4260.
FAN Weiqiang, LIU Yi. Fuzzy enhancement algorithm of coal mine degradation image based on adaptive wavelet transform[J]. Journal of China Coal Society, 2020, 45(12): 4248-4260.
|
[25] |
骆铁楠. 基于时间平滑多特征量火灾快速识别算法[J]. 煤炭技术, 2021, 40(5): 132-134.
LUO Tienan. Fast recognition algorithm research of fire flame based on multifeatures longitude regression with temporal smoothing[J]. Coal Technology, 2021, 40(5): 132-134.
|
[26] |
吕宇, 张子俊. 红外热成像技术在隧道火灾检测中的研究与应用[J]. 中国设备工程, 2023(11): 155-157. DOI: 10.3969/j.issn.1671-0711.2023.11.067
LÜ Yu, ZHANG Zijun. Research and application of infrared thermal imaging technology in tunnel fire detection[J]. China Plant Engineering, 2023(11): 155-157. DOI: 10.3969/j.issn.1671-0711.2023.11.067
|
[27] |
李晓宇, 陈伟, 杨维, 等. 基于超像素特征与SVM分类的人员安全帽分割方法[J]. 煤炭学报, 2021, 46(6): 2009-2022.
LI Xiaoyu, CHEN Wei, YANG Wei, et al. Segmentation method for personnel safety helmet based on super-pixel features and SVM classification[J]. Journal of China Coal Society, 2021, 46(6): 2009-2022.
|