TAN Yi, ZHANG Shaopu, HE Manchao, et al. Fissure field and microseismic spatiotemporal evolution patterns in mining overburden under giant thick sandstone[J]. Journal of Mining Science and Technology, 2025, 10(1): 70-85. DOI: 10.19606/j.cnki.jmst.2024921
Citation: TAN Yi, ZHANG Shaopu, HE Manchao, et al. Fissure field and microseismic spatiotemporal evolution patterns in mining overburden under giant thick sandstone[J]. Journal of Mining Science and Technology, 2025, 10(1): 70-85. DOI: 10.19606/j.cnki.jmst.2024921

Fissure field and microseismic spatiotemporal evolution patterns in mining overburden under giant thick sandstone

More Information
  • Received Date: August 02, 2024
  • Revised Date: November 20, 2024
  • The evolution height and distribution pattern of fractures in overburden strata induced by mining are among the crucial parameters for preventing and controlling roof water disasters. Taking the 3105 working face of a specific mine in Inner Mongolia as the engineering background, and utilizing numerical simulation, fractal geometry theory, and three-dimensional spatial analysis of microseismic events, we aim to clarify the spatiotemporal evolution laws of the mining-induced overburden fracture field and microseismic events. The results are as follows: ① Revealed the dynamic evolution law of "fracture generation, development, evolution, local compaction, periodic expansion, and large-scale compaction" in the mining overburden fracture field, as well as the fractal characteristics of the development, expansion, and penetration evolution of the mining fracture network field. ② This paper elucidates the spatiotemporal evolution law of the local "High frequency - high energy"concentration zone associated with mining-induced overburden instability, fracture, migration, and microseismic events. The "High frequency-high energy"and"Low frequency-small energy" concentration zones exhibit a periodic distribution, which aligns with the periodic weight-bearing characteristics of the working face. Typically, the location of microseismic event concentration zones precedes the working face by 80-120 m. ③ The evolution of the height of mining-induced fractures in the overburden rock, as determined by numerical simulation and microseismic monitoring, is basically consistent. ④ The concentration areas of "High frequency-high energy"and "Low frequency-small energy" microseismic events tend to show a "Saddle like" distribution with high ends and low middle, while the energy concentration areas of high-level microseismic events tend to show an "Ellipsoidal" distribution, and the quantity concentration areas show a "Strip like" distribution.

  • [1]
    袁亮, 姜耀东, 何学秋, 等. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报, 2018, 43(2): 306-318.

    YUAN Liang, JIANG Yaodong, HE Xueqiu, et al. Research progress of precise risk accurate identification and monitoring early warning on typical dynamic disasters in coal mine[J]. Journal of China Coal Society, 2018, 43(2): 306-318.
    [2]
    潘立友, 牛衍凯, 寇天司. 深部复杂立体边界采场冲击地压防控技术研究[J]. 岩土工程学报, 2022, 44(6): 1124-1132.

    PAN Liyou, NIU Yankai, KOU Tiansi. Prevention and control technology of rock burst in deep stope with complex solid boundary[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1124-1132.
    [3]
    LA POINTE P R. A method to characterize fracture density and connectivity through fractal geometry[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(6): 421-429.
    [4]
    HATTON C G, MAIN I G, MEREDITH P G. Non-universal scaling of fracture length and opening displacement[J]. Nature, 1994, 367(6459): 160-162. DOI: 10.1038/367160a0
    [5]
    GUDMUNDSSON A. Geometry, formation and development of tectonic fractures on the Reykjanes Peninsula, southwest Iceland[J]. Tectonophysics, 1987, 139(3/4): 295-308.
    [6]
    SCHOLZ C H, COWIE P A. Determination of total strain from faulting using slip measurements[J]. Nature, 1990, 346: 837-839. DOI: 10.1038/346837a0
    [7]
    WALSH J, WATTERSON J, YIELDING G. The importance of small-scale faulting in regional extension[J]. Nature, 1991, 351(6325): 391-393. DOI: 10.1038/351391a0
    [8]
    谢和平, 于广明, 杨伦, 等. 采动岩体分形裂隙网络研究[J]. 岩石力学与工程学报, 1999, 18(2): 147-151. DOI: 10.3321/j.issn:1000-6915.1999.02.007

    XIE Heping, YU Guangming, YANG Lun, et al. Research on the fractal effects of crack network in overburden rock stratum[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 147-151. DOI: 10.3321/j.issn:1000-6915.1999.02.007
    [9]
    李树刚, 秦伟博, 李志梁, 等. 重复采动覆岩裂隙网络演化分形特征[J]. 辽宁工程技术大学学报: 自然科学版, 2016, 35(12): 1384-1389. DOI: 10.11956/j.issn.1008-0562.2016.12.002

    LI Shugang, QIN Weibo, LI Zhiliang, et al. Research on fractal characterization of mined crack network evolution repeated coal mining[J]. Journal of Liaoning Technical University: Natural Science, 2016, 35(12): 1384-1389. DOI: 10.11956/j.issn.1008-0562.2016.12.002
    [10]
    王志国. 深部开采上覆岩层中采动裂隙网络演化规律研究[D]. 北京: 中国矿业大学(北京), 2011.

    WANG Zhiguo. Study on evolution law of mining fracture network in overlying strata of deep mining[D]. Beijing: China University of Mining & Technology, Beijing, 2011.
    [11]
    赵毅鑫, 令春伟, 刘斌, 等. 浅埋超大采高工作面覆岩裂隙演化及能量耗散规律研究[J]. 采矿与安全工程学报, 2021, 38(1): 9-18, 30.

    ZHAO Yixin, LING Chunwei, LIU Bin, et al. Fracture evolution and energy dissipation of overlying strata in shallow-buried underground mining with ultra-high working face[J]. Journal of Mining & Safety Engineering, 2021, 38(1): 9-18, 30.
    [12]
    李全生, 李晓斌, 许家林, 等. 岩层采动裂隙演化规律与生态治理技术研究进展[J]. 煤炭科学技术, 2022, 50(1): 28-47.

    LI Quansheng, LI Xiaobin, XU Jialin, et al. Research advances in mining fractures evolution law of rock strata and ecological treatment technology[J]. Coal Science and Technology, 2022, 50(1): 28-47.
    [13]
    李宏艳, 王维华, 齐庆新, 等. 基于分形理论的采动裂隙时空演化规律研究[J]. 煤炭学报, 2014, 39(6): 1023-1030.

    LI Hongyan, WANG Weihua, QI Qingxin, et al. Study on fissure development rule of overlying strata influenced by mining based on fractal theory[J]. Journal of China Coal Society, 2014, 39(6): 1023-1030.
    [14]
    赵洪宝, 高璐, 程辉, 等. 基于开采高度对工作面覆岩裂隙演化影响的钻孔瓦斯抽采研究[J]. 矿业科学学报, 2024, 9(3): 435-445. DOI: 10.19606/j.cnki.jmst.2024.03.012

    ZHAO Hongbao, GAO Lu, CHENG Hui, et al. Research on borehole gas extraction based on the influence of mining height on the evolution of overburden fracture in working face[J]. Journal of Mining Science and Technology, 2024, 9(3): 435-445. DOI: 10.19606/j.cnki.jmst.2024.03.012
    [15]
    姜福兴. 微震监测技术在矿井岩层破裂监测中的应用[J]. 岩土工程学报, 2002, 24(2): 147-149. DOI: 10.3321/j.issn:1000-4548.2002.02.004

    JIANG Fuxing. Application of microseismic monitoring technology of strata fracturing in underground coal mine[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 147-149. DOI: 10.3321/j.issn:1000-4548.2002.02.004
    [16]
    姜福兴, XUN Luo, 杨淑华. 采场覆岩空间破裂与采动应力场的微震探测研究[J]. 岩土工程学报, 2003, 25(1): 23-25. DOI: 10.3321/j.issn:1000-4548.2003.01.004

    JIANG Fuxing, XUN Luo, YANG Shuhua. Study on microseismic monitoring for spatial structure of overlying strata and mining pressure field in longwall face[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 23-25. DOI: 10.3321/j.issn:1000-4548.2003.01.004
    [17]
    姜福兴, 杨淑华. 微地震监测揭示的采场围岩空间破裂形态[J]. 煤炭学报, 2003, 28(4): 357-360. DOI: 10.3321/j.issn:0253-9993.2003.04.005

    JIANG Fuxing, YANG Shuhua. Spatial fracturing progresses of surrounding rock masses in longwall face monitored by microseismic monitoring techniques[J]. Journal of China Coal Society, 2003, 28(4): 357-360. DOI: 10.3321/j.issn:0253-9993.2003.04.005
    [18]
    程关文. 煤矿突水的微破裂前兆信息微震监测技术研究[D]. 大连: 大连理工大学, 2017: 67-87.

    CHENG Guanwen. Study on microseismic monitoring technology of micro-fracture precursor information of coal mine water inrush[D]. Dalian: Dalian University of Technology, 2017: 67-87.
    [19]
    王悦, 于水, 王苏健, 等. 微震监测技术在煤矿底板突水预警中的应用[J]. 煤炭科学技术, 2018, 46(8): 68-73.

    WANG Yue, YU Shui, WANG Sujian, et al. Application of microseismic monitoring technology in water inrush warning of coal mine floor[J]. Coal Science and Technology, 2018, 46(8): 68-73.
    [20]
    靳德武, 段建华, 李连崇, 等. 基于微震的底板采动裂隙扩展及导水通道识别技术研究[J]. 工程地质学报, 2021, 29(4): 962-971.

    JIN Dewu, DUAN Jianhua, LI Lianchong, et al. Microseismicity based research for mining induced fracture propagation and water pathway identification technology of floor[J]. Journal of Engineering Geology, 2021, 29(4): 962-971.
    [21]
    韩刚, 李旭东, 曲晓成, 等. 采场覆岩空间破裂与采动应力场分布关联性研究[J]. 煤炭科学技术, 2019, 47(2): 53-58.

    HAN Gang, LI Xudong, QU Xiaocheng, et al. Study on correlation between spatial fracturing of overlying strata and distribution of mining stress field in stope[J]. Coal Science and Technology, 2019, 47(2): 53-58.
    [22]
    肖鹏, 韩凯, 双海清, 等. 基于微震监测的覆岩裂隙演化规律相似模拟试验研究[J]. 煤炭科学技术, 2022, 50(9): 48-56.

    XIAO Peng, HAN Kai, SHUANG Haiqing, et al. Similar material simulation test study on evolution law of overburden fracture based on microseismic monitoring[J]. Coal Science and Technology, 2022, 50(9): 48-56.
    [23]
    徐超, 王凯, 郭琳, 等. 采动覆岩裂隙与渗流分形演化规律及工程应用[J]. 岩石力学与工程学报, 2022, 41(12): 2389-2403.

    XU Chao, WANG Kai, GUO Lin, et al. Fractal evolution law of overlying rock fracture and seepage caused by mining and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(12): 2389-2403.
    [24]
    王新丰, 高明中, 李隆钦. 深部采场采动应力、覆岩运移以及裂隙场分布的时空耦合规律[J]. 采矿与安全工程学报, 2016, 33(4): 604-610.

    WANG Xinfeng, GAO Mingzhong, LI Longqin. Spatiotemporal coupling law of mining pressure, strata movement and fracture field distribution in deep stope[J]. Journal of Mining & Safety Engineering, 2016, 33(4): 604-610.
    [25]
    崔峰, 杨彦斌, 来兴平, 等. 基于微震监测关键层破断诱发冲击地压的物理相似材料模拟实验研究[J]. 岩石力学与工程学报, 2019, 38(4): 803-814.

    CUI Feng, YANG Yanbin, LAI Xingping, et al. Similar material simulation experimental study on rockbursts induced by key stratum breaking based on microseismic monitoring[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 803-814.
    [26]
    崔峰, 张随林, 刘旭东, 等. 急倾斜巨厚煤层复杂空间结构区微震时空演化规律及诱冲机理[J]. 煤炭学报, 2024, 49(4): 1786-1803.

    CUI Feng, ZHANG Suilin, LIU Xudong, et al. Temporal and spatial evolution law of microseisms and induced impact mechanism in complex spatial structure area of steep and extremely thick coal seam[J]. Journal of China Coal Society, 2024, 49(4): 1786-1803.

Catalog

    Article Metrics

    Article views (25) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return