Volume 9 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
XU Ke. Prediction of fractures in tight carbonate gas reservoirs and analysis of main controlling factors: a case study on Dengying formation reservoir of Gaoshiti block in the Sichuan Basin[J]. Journal of Mining Science and Technology, 2024, 9(3): 327-341. doi: 10.19606/j.cnki.jmst.2024.03.002
Citation: XU Ke. Prediction of fractures in tight carbonate gas reservoirs and analysis of main controlling factors: a case study on Dengying formation reservoir of Gaoshiti block in the Sichuan Basin[J]. Journal of Mining Science and Technology, 2024, 9(3): 327-341. doi: 10.19606/j.cnki.jmst.2024.03.002

Prediction of fractures in tight carbonate gas reservoirs and analysis of main controlling factors: a case study on Dengying formation reservoir of Gaoshiti block in the Sichuan Basin

doi: 10.19606/j.cnki.jmst.2024.03.002
  • Received Date: 2023-12-27
  • Rev Recd Date: 2024-01-11
  • Publish Date: 2024-06-30
  • Natural fractures are important storage spaces and seepage channels in tight carbonate reservoirs. It is therefore of practical significance to quantitatively predicting their development and distribution patterns and revealing the dominant geological factors that control the development of gas reservoirs. This study looks at the fractures in the tight carbonate reservoir of Dengying Formation in Gaoshiti block of Leshan-Longnusi ancient uplift in the central Sichuan Basin. Based on the characterization of fracture parameters, we established a calculation model of stress field-energy-fracture parameters, and carried out quantitative prediction of fracture development and distribution patterns by combining multi-phase fracture superimposition algorithms. We then analyzed the influence of lithology, faults, and structural morphology on fracture development. The results show that: (1)The fractures in Dengying Formation of Gaoshiti block are mainly tension-shear fractures, high-angle fractures, and semi-filled fractures. The preferential fracture strike is NW-SE and near N-S directions. The fracture density is between 0 and 2 fractures per meter, and the high-value areas are mainly distributed in the fault zones and central regions; (2)There is a negative exponential power relationship between the length and density of natural fractures in the Gaoshiti block. Fracture development exhibits interlayer differences: The limestone reservoir has a high degree of fracture development, and mudstone has a blocking effect on fracture propagation; (3)Fracture development scale and occurrence are significantly affected by faults and folds: fracture around faults shows high density, large aperture and short length. Shear fractures are nearly parallel or at a low angle to strike-slip faults, and tensile fractures are at a high angle to the main strike-slip faults; folds mainly affect fracture aperture through structural curvature, with larger fracture apertures in high-degree deformation structural positions, and smaller values in the wings. The results could provide references for efficient exploration and profitable development of gas reservoirs in the study area and other regions with similar geological conditions.

  • loading
  • [1]
    张国生, 赵文智, 杨涛, 等. 我国致密砂岩气资源潜力、分布与未来发展地位[J]. 中国工程科学, 2012, 14(6): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206011.htm

    ZHANG Guosheng, ZHAO Wenzhi, YANG Tao, et al. Resource evaluation, position and distribution of tight sandstone gas in China[J]. Engineering Sciences, 2012, 14(6): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206011.htm
    [2]
    WALLS J D. Tight gas sands-permeability, pore structure, and clay[J]. Journal of Petroleum Technology, 1982, 34(11): 2708-2714. doi: 10.2118/9871-PA
    [3]
    OLSON J E, LAUBACH S E, LANDER R H. Natural fracture characterization in tight gas sandstones: integrating mechanics and diagenesis[J]. AAPG Bulletin, 2009, 93(11): 1535-1549. doi: 10.1306/08110909100
    [4]
    孙珂, 徐珂, 陈清华. 低渗透储层构造裂缝长度表征及应用: 以四川盆地磨溪—高石梯地区寒武系龙王庙组为例[J]. 石油实验地质, 2022, 44(1): 160-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202201017.htm

    SUN Ke, XU Ke, CHEN Qinghua. Characterization of the length of structural fractures in low permeability reservoirs and its application: a case study of Longwangmiao Formation in MoxiGaoshiti areas, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 160-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202201017.htm
    [5]
    冯建伟, 昌伦杰, 孙致学, 等. 多因素约束下的致密砂岩气藏离散裂缝特征及地质模型研究[J]. 中国石油大学学报: 自然科学版, 2016, 40(1): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201601003.htm

    FENG Jianwei, CHANG Lunjie, SUN Zhixue, et al. Geological model and characteristics of dissrete fracture network in tight sandstone gas reservoir constrained by multi-factors[J]. Journal of China University of Petroleum: Edition of Natural Science, 2016, 40(1): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201601003.htm
    [6]
    王珂, 张惠良, 张荣虎, 等. 塔里木盆地克深2气田储层构造裂缝多方法综合评价[J]. 石油学报, 2015, 36(6): 673-687. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201506004.htm

    WANG Ke, ZHANG Huiliang, ZHANG Ronghu, et al. Comprehensive assessment of reservoir structural fracture with multiple methods in Keshen-2 gas field, Tarim Basin[J]. Acta Petrolei Sinica, 2015, 36(6): 673-687. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201506004.htm
    [7]
    丁中一, 钱祥麟, 霍红, 等. 构造裂缝定量预测的一种新方法──二元法[J]. 石油与天然气地质, 1998(1): 3-9, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT801.000.htm

    DING Zhongyi, QIAN Xianglin, HUO Hong, et al. A new method for quantitative prediction of tectonic fractures two factor method [J]. Oil & Gas Geology, 1998(1): 3-9, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT801.000.htm
    [8]
    鞠玮, 侯贵廷, 冯胜斌, 等. 鄂尔多斯盆地庆城—合水地区延长组长63储层构造裂缝定量预测[J]. 地学前缘, 2014, 21(6): 310-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201406036.htm

    JU Wei, HOU Guiting, FENG Shengbin, et al. Quantitative prediction of the Yanchang Formation Chang 63 reservoir tectonic fracture in the Qingcheng-Heshui Area, Ordos Basin[J]. Earth Science Frontiers, 2014, 21(6): 310-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201406036.htm
    [9]
    童亨茂. 储层裂缝描述与预测研究进展[J]. 新疆石油学院学报, 2004(2): 9-13, 1. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY200402003.htm

    TONG Hengmao. Description and prediction of reservoir fractures networks[J]. Journal of Xinjiang Petroleum Institute, 2004(2): 9-13, 1. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY200402003.htm
    [10]
    邬光辉, 李建军, 杨栓荣, 等. 塔里木盆地中部地区奥陶纪碳酸盐岩裂缝与断裂的分形特征[J]. 地质科学, 2002, 37(S1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX2002S1008.htm

    WU Guanghui, LI Jianjun, YANG Shuanrong, et al. Fractal characteristics of fissures and fractures of Ordovician carbonate rocks in the central Tarim Area[J]. Chinese Journal of Geology: Scientia Geologica Sinica, 2002, 37(S1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX2002S1008.htm
    [11]
    印兴耀, 马妮, 马正乾, 等. 地应力预测技术的研究现状与进展[J]. 石油物探, 2018, 57(4): 488-504. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201804002.htm

    YIN Xingyao, MA Ni, MA Zhengqian, et al. Review of in situ stress prediction technology[J]. Geophysical Prospecting for Petroleum, 2018, 57(4): 488-504. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201804002.htm
    [12]
    董春梅, 孙裔婷, 马存飞, 等. 基于地质模式约束的天然裂缝测井识别方法研究[J]. 地球物理学进展, 2020, 35(4): 1352-1363. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202004016.htm

    DONG Chunmei, SUN Yiting, MA Cunfei, et al. Research on natural fracture logging identification method based on geological model constraints[J]. Progress in Geophysics, 2020, 35(4): 1352-1363. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202004016.htm
    [13]
    胡伟光. 相干体技术在川东北油气勘探中的应用[J]. 物探化探计算技术, 2010, 32(3): 260-264, 220. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT201003008.htm

    HU Weiguang. Application of coherence analysis technique to the oil and gas exploration in northeast Sichuan Basin[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2010, 32(3): 260-264, 220. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT201003008.htm
    [14]
    刘晓梅, 孙勤华, 刘建新, 等. 利用地震属性、多元统计分析理论和ANFIS预测碳酸盐岩储层裂缝孔隙度[J]. 测井技术, 2009, 33(3): 257-260. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200903014.htm

    LIU Xiaomei, SUN Qinhua, LIU Jianxin, et al. Prediction of fracture porosity of carbonate reservoir with seismic attributes, multi-analysis and ANFIS[J]. Well Logging Technology, 2009, 33(3): 257-260. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200903014.htm
    [15]
    顾雯, 王铎翰, 阎建国. 基于地震多属性的裂缝检测技术[J]. 天然气勘探与开发, 2013, 36(3): 17-22, 6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201303004.htm

    GU Wen, WANG Duohan, YAN Jianguo. Fracture detection based on seismic multiple attributes[J]. Natural Gas Exploration & Development, 2013, 36(3): 17-22, 6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201303004.htm
    [16]
    任启强, 金强, 冯振东, 等. 和田河气田奥陶系碳酸盐岩储层关键期构造裂缝预测[J]. 中国石油大学学报: 自然科学版, 2020, 44(6): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202006002.htm

    REN Qiqiang, JIN Qiang, FENG Zhendong, et al. Prediction of key period fractures of Ordovician carbonate reservoir in Hetianhe gas field[J]. Journal of China University of Petroleum: Edition of Natural Science, 2020, 44(6): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202006002.htm
    [17]
    徐珂, 戴俊生, 冯建伟, 等. 磨溪—高石梯区块断层对裂缝分布的控制作用[J]. 西南石油大学学报: 自然科学版, 2019, 41(2): 10-22. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201902002.htm

    XU Ke, DAI Junsheng, FENG Jianwei, et al. Fault system and its controlling effect on fracture distribution in moxi-gaoshiti block, Sichuan basin, China[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2019, 41(2): 10-22. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201902002.htm
    [18]
    谭忠健, 邓津辉, 张向前, 等. 基于热力耦合分析的火山热膨胀型裂缝定量表征[J]. 地球科学, 2023, 48(7): 2665-2677. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307017.htm

    TAN Zhongjian, DENG Jinhui, ZHANG Xiangqian, et al. Quantitative characterization of fractures under volcanic thermal expansion based on thermal-mechanical coupling analysis[J]. Earth Science, 2023, 48(7): 2665-2677. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307017.htm
    [19]
    戴俊生, 商琳, 王彤达, 等. 富台潜山凤山组现今地应力场数值模拟及有效裂缝分布预测[J]. 油气地质与采收率, 2014, 21(6): 33-36, 113. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201406008.htm

    DAI Junsheng, SHANG Lin, WANG Tongda, et al. Numerical simulation of current in situ stress field of Fengshan Formation and distribution prediction of effective fracture in Futai buried hill[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(6): 33-36, 113. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201406008.htm
    [20]
    邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm

    ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm
    [21]
    杨雪飞, 王兴志, 杨跃明, 等. 川中地区下寒武统龙王庙组白云岩储层成岩作用[J]. 地质科技情报, 2015, 34(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501006.htm

    YANG Xuefei, WANG Xingzhi, YANG Yueming, et al. Diagenesis of the dolomite reservoir in lower Cambrian longwangmiao formation in central Sichuan Basin[J]. Geological Science and Technology Information, 2015, 34(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501006.htm
    [22]
    ZHU R X, YANG Z Y, WU H N, et al. Paleomagnetic constraints on the tectonic history of the major blocks of China duing the Phanerozoic[J]. Science in China Series D: Earth Sciences, 1998, 41(2): 1-19.
    [23]
    冯岩, 温珍河, 郑求根, 等. 古大陆再造与中国主要块体运动特征[J]. 海洋地质前沿, 2011, 27(7): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201107008.htm

    FENG Yan, WEN Zhenhe, ZHENG Qiugen, et al. A review of progress in paleocontinent reconstruction research in China[J]. Marine Geology Frontiers, 2011, 27(7): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201107008.htm
    [24]
    万天丰. 中国大陆早古生代构造演化[J]. 地学前缘, 2006, 13(6): 30-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606006.htm

    WAN Tianfeng. Tectonic evolution in the Chinese continent from Middle Cambrian to Early Devonian[J]. Earth Science Frontiers, 2006, 13(6): 30-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606006.htm
    [25]
    操成杰. 川西北地区构造应力场分析与应用[D]. 北京: 中国地质科学院, 2005.

    CAO Chengjie. Tectonic Stress Field Analysis and Application in the Northwest Sichuan Basin[D]. Beijing: Chinese Academy of Geological Sciences, 2005.
    [26]
    文世鹏, 李德同. 储层构造裂缝数值模拟技术[J]. 石油大学学报: 自然科学版, 1996, 20(5): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX605.004.htm

    WEN Shipeng, LI Detong. Numerical simulation technology for structural fracture of reservoir[J]. Journal of China University of Petroleum: Edition of Natural Science, 1996, 20(5): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX605.004.htm
    [27]
    陈波, 田崇鲁. 储层构造裂缝数值模拟技术的应用实例[J]. 石油学报, 1998, 19(4): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB804.009.htm

    CHEN Bo, TIAN Chonglu. Oil field development abstract numerical simulation technique for structural fractures in a reservoir: case studies[J]. Acta Petrolei Sinica, 1998, 19(4): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB804.009.htm
    [28]
    王珂. 克深气田碎屑岩储层裂缝定量描述[D]. 东营: 中国石油大学(华东), 2014.

    WANG Ke. Quantitative description of reservoir fracture in clastic rocks of Keshen gas field[D]. Dongying: China University of Petroleum, 2014.
    [29]
    任启强. 和田河气田碳酸盐岩储层裂缝定量描述[D]. 东营: 中国石油大学(华东), 2016.

    REN Qiqiang. Quantitative description of carbonate reservoir fractures in Hetianhe gas field[D]. Dongying: China University of Petroleum, 2016.
    [30]
    WILLIS-RICHARDS J, WATANABE K, TAKAHASHI H. Progress toward a stochastic rock mechanics model of engineered geothermal systems[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B8): 17481-17496.
    [31]
    HICKS T W, PINE R J, WILLIS-RICHARDS J, et al. A hydro-thermo-mechanical numerical model for HDR geothermal reservoir evaluation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(5): 499-511.
    [32]
    秦积舜. 变围压条件下低渗砂岩储层渗透率变化规律研究[J]. 西安石油学院学报: 自然科学版, 2002, 17(4): 28-31, 35-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200204006.htm

    QIN Jishun. Variation of the permeability of the low-permeability sandstone reservoir under variable confined pressure[J]. Journal of Xi'an Petroleum Institute, 2002, 17(4): 28-31, 35-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200204006.htm
    [33]
    王凯, 赵恩彪, 郭阳阳, 等. 中间主应力影响下含瓦斯复合煤岩体变形渗流及能量演化特征研究[J]. 矿业科学学报, 2023, 8(1): 74-82. doi: 10.19606/j.cnki.jmst.2023.01.007

    WANG Kai, ZHAO Enbiao, GUO Yangyang, et al. Deformation, seepage and energy evolution characteristics of gas-bearing coal-rock under intermediate principal stress[J]. Journal of Mining Science and Technology, 2023, 8(1): 74-82. doi: 10.19606/j.cnki.jmst.2023.01.007
    [34]
    徐珂, 戴俊生, 付晓龙, 等. 基于有限元法的层状岩体破裂规律探讨[J]. 地质力学学报, 2015, 21(3): 330-340. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201503003.htm

    XU Ke, DAI Junsheng, FU Xiaolong, et al. Discussion on the fracture of layered rock mass based on the finite element method[J]. Journal of Geomechanics, 2015, 21(3): 330-340. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201503003.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (60) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return