Liu Xiaohui, Ruan Zhuen, Zhu Quanjie, et al. Study on fractal feature and settling velocity of tailings floc[J]. Journal of Mining Science and Technology, 2023, 8(3): 390-397. DOI: 10.19606/j.cnki.jmst.2023.03.012
Citation: Liu Xiaohui, Ruan Zhuen, Zhu Quanjie, et al. Study on fractal feature and settling velocity of tailings floc[J]. Journal of Mining Science and Technology, 2023, 8(3): 390-397. DOI: 10.19606/j.cnki.jmst.2023.03.012

Study on fractal feature and settling velocity of tailings floc

More Information
  • Received Date: June 12, 2022
  • Revised Date: October 27, 2022
  • Available Online: May 09, 2023
  • Flocculent settling widely exists in various processes of tailings disposal.It bears significance for the accurate calculation of the flocculent settling velocity in engineering, such as tailings backfilling and surface disposal.This paper studied the structural characteristics of tailings flocs from the perspective of the fractal theory, and established the mathematical relationship between tailings particle size, geometry size of floc and fractal dimension.It analyzed the influence of buoyancy effect, reflux effect and viscosity effect on floc settling, and deduced a calculation formula of tailings flocculent settling velocity.This study carried out a tailings flocculent settling test observed the changes in geometric morphology of flocs by focused beam reflectance measurement technology(FBRM), and carried out validation analysis between testing data and model calculation value.The results showed that the settling velocity increased with the equivalent grain size of flocs, which could be divided into three stages, namely accelerated settling, uniform settling and compaction settling.The equivalent grain size of flocs of test tailings were 140~350 μm, and the settling velocity calculated by the formula were 1.3~2.0 mm/s when the fractal dimension was 2.25, which demonstrates significant correlation with the testing value, and had certain practical application value.
  • [1]
    吴爱祥, 杨莹, 程海勇, 等. 中国膏体技术发展现状与趋势[J]. 工程科学学报, 2018, 40(5): 517-525. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805001.htm

    Wu Aixiang, Yang Ying, Cheng Haiyong, et al. Status and prospects of paste technology in China[J]. Chinese Journal of Engineering, 2018, 40(5): 517-525. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805001.htm
    [2]
    阮竹恩, 吴爱祥, 焦华喆, 等. 我国全尾砂料浆浓密研究进展与发展趋势[J]. 中国有色金属学报, 2022, 32(1): 286-301. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202201026.htm

    Ruan Zhuen, Wu Aixiang, Jiao Huazhe, et al. Advances and trends on thickening of full-tailings slurry in China[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(1): 286-301. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202201026.htm
    [3]
    吴爱祥, 周靓, 尹升华, 等. 全尾砂絮凝沉降的影响因素[J]. 中国有色金属学报, 2016, 26(2): 439-446. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201602023.htm

    Wu Aixiang, Zhou Jing, Yin Shenghua, et al. Influence factors on flocculation sedimentation of unclassified tailings[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 439-446. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201602023.htm
    [4]
    焦华喆, 吴爱祥, 王洪江, 等. 全尾砂絮凝沉降特性实验研究[J]. 北京科技大学学报, 2011, 33(12): 1437-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201112001.htm

    Jiao Huazhe, Wu Aixiang, Wang Hongjiang, et al. Experiment study on the flocculation settlement characteristic of unclassified tailings[J]. Journal of University of Science and Technology Beijing, 2011, 33(12): 1437-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201112001.htm
    [5]
    焦华喆, 王洪江, 吴爱祥, 等. 全尾砂絮凝沉降规律及其机理[J]. 北京科技大学学报, 2010, 32(6): 702-707. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201006002.htm

    Jiao Huazhe, Wang Hongjiang, Wu Aixiang, et al. Rule and mechanism of flocculation sedimentation of unclassified tailings[J]. Journal of University of Science and Technology Beijing, 2010, 32(6): 702-707. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201006002.htm
    [6]
    任伟成, 乔登攀. 大红山铜矿尾砂沉降数据的回归方程研究[J]. 矿产保护与利用, 2014(5): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201405017.htm

    Ren Weicheng, Qiao Dengpan. Study on settlement data regression equation of Dahongshan copper tailings[J]. Conservation and Utilization of Mineral Resources, 2014(5): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201405017.htm
    [7]
    李警阳, 张忠国, 孙春宝, 等. 基于分形学的絮凝理论研究进展[J]. 化工进展, 2012, 31(12): 2609-2614, 2625. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201212002.htm

    Li Jingyang, Zhang Zhongguo, Sun Chunbao, et al. A review of flocculation theories incorporating fractal geometry[J]. Chemical Industry and Engineering Progress, 2012, 31(12): 2609-2614, 2625. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201212002.htm
    [8]
    郭超, 何青. 黏性泥沙絮凝研究综述与展望[J]. 泥沙研究, 2021, 46(2): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ202102012.htm

    Guo Chao, He Qing. Review of the research on cohesive sediment flocculation[J]. Journal of Sediment Research, 2021, 46(2): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ202102012.htm
    [9]
    张乃予, 周晶晶, 王捷. 泥沙絮团结构的试验研究综述[J]. 泥沙研究, 2016(1): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ201601014.htm

    Zhang Naiyu, Zhou Jingjing, Wang Jie. A review of experimental study on floc structure of cohesive sediment[J]. Journal of Sediment Research, 2016(1): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ201601014.htm
    [10]
    Wu A X, Ruan Z E, Bürger R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology[J]. Minerals Engineering, 2020, 156: 106488.
    [11]
    周旭, 阮竹恩, 吴爱祥, 等. 基于FBRM和PVM技术的尾矿浓密过程絮团演化规律[J]. 工程科学学报, 2021, 43(11): 1425-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202111001.htm

    Zhou Xu, Ruan Zhuen, Wu Aixiang, et al. Aggregate evolution rule during tailings thickening based on FBRM and PVM[J]. Chinese Journal of Engineering, 2021, 43(11): 1425-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202111001.htm
    [12]
    阮竹恩, 吴爱祥, 王建栋, 等. 基于絮团弦长测定的全尾砂絮凝沉降行为[J]. 工程科学学报, 2020, 42(8): 980-987. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202008005.htm

    Ruan Zhuen, Wu Aixiang, Wang Jiandong, et al. Flocculation and settling behavior of unclassified tailings based on measurement of floc chord length[J]. Chinese Journal of Engineering, 2020, 42(8): 980-987. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202008005.htm
    [13]
    李翠平, 陈格仲, 阮竹恩, 等. 尾砂浓密全过程的絮团结构动态演化规律[J/OL]. 中国有色金属学. http://kns.cnki.net/kcms/detail/43.1238.TG.20220311.2000.002.html.
    [14]
    侯贺子, 李翠平, 王少勇, 等. 尾矿浓密中泥层沉降速度变化及颗粒沉降特性[J]. 中南大学学报: 自然科学版, 2019, 50(6): 1428-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201906022.htm

    Hou Hezi, Li Cuiping, Wang Shaoyong, et al. Settling velocity variation of mud layer and particle settling characteristics in thickening of tailings[J]. Journal of Central South University: Science and Technology, 2019, 50(6): 1428-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201906022.htm
    [15]
    陈格仲, 李翠平, 阮竹恩, 等. 膏体充填中絮凝条件对絮团结构及固液分离效率的影响[J]. 中国有色金属学报, 2022, 32(10): 3169-3182. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202210024.htm

    Chen Gezhong, Li Cuiping, Ruan Zhuen, et al. Influence of flocculation conditions on floc structure and solid-liquid separation in cemented paste filling[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(10): 3169-3182. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202210024.htm
    [16]
    Leiva W H, Fawell P D, Goñi C, et al. Temporal evolution of the structure of tailings aggregates flocculated in seawater[J]. Minerals Engineering, 2021, 160: 106708.
    [17]
    Nieto S, Toro N, Robles P, et al. Flocculation of clay-based tailings: differences of Kaolin and sodium montmorillonite in salt medium[J]. Materials, 2022, 15(3): 1156.
    [18]
    Talmon A M, van Kesteren W G M, Sittoni L, et al. Shear cell tests for quantification of tailings segregation[J]. The Canadian Journal of Chemical Engineering, 2014, 92(2): 362-373.
    [19]
    Ruan Z E, Wu A X, Bürger R, et al. A population balance model for shear-induced polymer-bridging flocculation of total tailings[J]. Minerals, 2021, 12(1): 30-40.
    [20]
    Winterwerp J C. On the flocculation and settling velocity of estuarine mud[J]. Continental Shelf Research, 2002, 22(9): 1339-1360.
    [21]
    杨铁笙, 熊祥忠, 詹秀玲, 等. 粘性细颗粒泥沙絮凝研究概述[J]. 水利水运工程学报, 2003(2): 65-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY200302013.htm

    Yang Tiesheng, Xiong Xiangzhong, Zhan Xiuling, et al. On flocculaton of cohesive fine sediment[J]. Hydro-Science and Engineering, 2003(2): 65-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY200302013.htm
    [22]
    Winterwerp J, Kesteren W V. Introduction to the physics of cohesive sediment dynamics in the marine environment[M]. Amsterdam: Elsevier, 2004: 93-95.
    [23]
    Hanssen J. Towards improving predictions of non-Newtonian settling slurries with Delft 3D: theoretical development and validation in 1DV[D]. Delft: Delft University of Technology, 2016.
    [24]
    Kranenburg C. The fractal structure of cohesive sediment aggregates[J]. Estuarine, Coastal and Shelf Science, 1994, 39(6): 451-460.
    [25]
    Feder J. Fractals[M]. New York: Plenum Press, 1988: 163-167.
    [26]
    Khelifa A, Hill P S. Models for effective density and settling velocity of flocs[J]. Journal of Hydraulic Research, 2006, 44(3): 390-401.
    [27]
    Winterwerp J C. A simple model for turbulence induced flocculation of cohesive sediment[J]. Journal of Hydraulic Research, 1998, 36(3): 309-326.
    [28]
    阮竹恩. 给料井内全尾砂絮凝行为及其优化应用研究[D]. 北京: 北京科技大学, 2021.
    [29]
    Wu A X, Ruan Z E, Bürger R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology[J]. Minerals Engineering, 2020, 156: 106488.

Catalog

    Article Metrics

    Article views (254) PDF downloads (28) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return