Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Wang Qizhou, Li Chunquan, Yin Shuaijun, Sun Zhiming. Preparation of CaCl2-heat treated coal slime based composite catalytic material and its performance toward phenol degradation by activating peroxymonosulfate[J]. Journal of Mining Science and Technology, 2023, 8(1): 127-136. doi: 10.19606/j.cnki.jmst.2023.01.012
Citation: Wang Qizhou, Li Chunquan, Yin Shuaijun, Sun Zhiming. Preparation of CaCl2-heat treated coal slime based composite catalytic material and its performance toward phenol degradation by activating peroxymonosulfate[J]. Journal of Mining Science and Technology, 2023, 8(1): 127-136. doi: 10.19606/j.cnki.jmst.2023.01.012

Preparation of CaCl2-heat treated coal slime based composite catalytic material and its performance toward phenol degradation by activating peroxymonosulfate

doi: 10.19606/j.cnki.jmst.2023.01.012
  • Received Date: 2022-07-06
  • Rev Recd Date: 2022-08-21
  • Publish Date: 2023-02-28
  • Based on the current situation of comprehensive utilization of coal slime in China and the urgent need for water pollution control in coal mining areas, this paper uses coal slime(CS)as raw material and CaCl2 as the activator, different proportions of coal slime-based catalytic materials were prepared under anaerobic calcination, which were characterized by XRD, SEM, BET, FT-IR, XPS, Raman spectroscopy, etc. This study investigated its ability to activate peroxymonosulfate(PMS)for the catalytic degradation of phenol in wastewater. Results show that the catalytic material prepared by CaCl2-heat treated coal slime can effectively activate PMS to achieve the highly efficient degradation of phenol. In addition, when the mass ratio of coal slime and CaCl2 reach 4∶3, it shows the optimal degradation performance, whose degradation rate of phenol can reach 100 %. The active species 1O2 played a major role in the degradation system. Moreover, the catalytic materials could be applied in a wide pH range(3.0~11.0), and the influence of various anions in water on the degradation of phenol is relatively limited, indicating their good application prospect in wastewater treatment.
  • loading
  • [1]
    Septian A, Kumar A V N, Sivasankar A, et al. Colloidal activated carbon as a highly efficient bifunctional catalyst for phenol degradation[J]. Journal of Hazardous Materials, 2021, 414: 125474. doi: 10.1016/j.jhazmat.2021.125474
    [2]
    Wang J L, Wang S Z. Activation of persulfate(PS)and peroxymonosulfate(PMS)and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
    [3]
    Yuan B, Mao X Z, Wang Z, et al. Radical-induced oxidation removal of multi-air-pollutant: a critical review[J]. Journal of Hazardous Materials, 2020, 383: 121162. doi: 10.1016/j.jhazmat.2019.121162
    [4]
    刘楚汉, 于海洋, 梁永森, 等. 过硫酸盐活化技术研究进展及展望[J]伊犁师范学院学报: 自然科学版, 2020, 14(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZK202002009.htm

    Liu Chuhan, Yu Haiyang, Liang Yongsen, et al. Research progress and prospect of persulfate activation technology[J]. Journal of Yili Normal University: Natural Science Edition, 2020, 14(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZK202002009.htm
    [5]
    Huang W Q, Xiao S, Zhong H, et al. Activation of persulfates by carbonaceous materials: a review[J]. Chemical Engineering Journal, 2021, 418: 129297. doi: 10.1016/j.cej.2021.129297
    [6]
    Chen J B, Zhang L M, Huang T Y, et al. Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: radical versus non-radical mechanism[J]. Journal of Hazardous Materials, 2016, 320: 571-580. doi: 10.1016/j.jhazmat.2016.07.038
    [7]
    Kemmou L, Frontistis Z, Vakros J, et al. Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate: factors affecting the activation and degradation processes[J]. Catalysis Today, 2018, 313: 128-133. doi: 10.1016/j.cattod.2017.12.028
    [8]
    司玉成, 杜美利. 煤泥利用研究进展[J]. 广东化工, 2017, 44(4): 79-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201704034.htm

    Si Yucheng, Du Meili. Research progress of slime utilization[J]. Guangdong Chemical Industry, 2017, 44(4): 79-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201704034.htm
    [9]
    杨胜利, 王家臣, 李明. 煤矿采场围岩智能控制技术路径与设想[J]. 矿业科学学报, 2022, 7(4): 403-416. doi: 10.19606/j.cnki.jmst.2022.04.002

    Yang Shengli, Wang Jiachen, Li Ming. Technology path and assumptions of intelligent surrounding rock control at longwall working face[J]. Journal of Mining Science and Technology, 2022, 7(4): 403-416. doi: 10.19606/j.cnki.jmst.2022.04.002
    [10]
    陈荣芳, 郭志国, 张俊, 等. 氧化煤低温氧化特性及演化规律[J]. 矿业科学学报, 2022, 7(4): 498-504. doi: 10.19606/j.cnki.jmst.2022.04.012

    Chen Rongfang, Guo Zhiguo, Zhang Jun, et al. Characteristics and evolution law of low-temperature oxidation of oxidized coal at recrudescence stage[J]. Journal of Mining Science and Technology, 2022, 7(4): 498-504. doi: 10.19606/j.cnki.jmst.2022.04.012
    [11]
    刘梦, 王汉林, 刘海波, 等. 热分解黄铁矿制备单斜磁黄铁矿活化PDS降解土霉素[J]. 硅酸盐学报, 2021, 49(7): 1403-1411. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202107016.htm

    Liu Meng, Wang Hanlin, Liu Haibo, et al. Monoclinic pyrrhotite derived from pyrite through thermal decomposition to activate PDS for the degradation of oxytetracycline[J]. Journal of the Chinese Ceramic Society, 2021, 49(7): 1403-1411. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202107016.htm
    [12]
    郝名远, 陈欢乐, 李淑敏, 等. 煤矸石制备气凝胶研究进展[J]. 矿产保护与利用, 2022, 42(1): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202201024.htm

    Hao Mingyuan, Chen Huanle, Li Shumin, et al. Research progress on the preparation of aerogel from coal gangue[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202201024.htm
    [13]
    朱红龙, 帅欢, 刘莉, 等. 非金属矿物材料在矿山废水处理中的应用[J]. 矿产保护与利用, 2021, 41(1): 26-31. doi: 10.13779/j.cnki.issn1001-0076.2021.01.004

    Zhu Honglong, Shuai Huan, Liu Li, et al. Reviews in application of non-metallic minerals materials used in mine wastewater treatment[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 26-31. doi: 10.13779/j.cnki.issn1001-0076.2021.01.004
    [14]
    Traoré K, Kabré T S, Blanchart P. Gehlenite and anorthite crystallisation from kaolinite and calcite mix[J]. Ceramics International, 2003, 29(4): 377-383. doi: 10.1016/S0272-8842(02)00148-7
    [15]
    李春全, 王丝蒂, 汪欣林, 等. 风化煤基催化材料的制备及其活化PMS降解苯酚[J]. 煤炭学报, 2022, 47(5): 2067-2077. doi: 10.13225/j.cnki.jccs.2022.0181

    Li Chunquan, Wang Sidi, Wang Xinlin, et al. Preparation of weathered coal-based catalytic material and its performance in phenol degradation by activating peroxymonosulfate[J]. Journal of China Coal Society, 2022, 47(5): 2067-2077. doi: 10.13225/j.cnki.jccs.2022.0181
    [16]
    Fernández-Jiménez A, Palomo A. Mid-infrared spectroscopic studies of alkali-activated fly ash structure[J]. Microporous and Mesoporous Materials, 2005, 86(1/2/3): 207-214.
    [17]
    Li C Q, Sun Z M, Song A K, et al. Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum[J]. Applied Catalysis B: Environmental, 2018, 236: 76-87. doi: 10.1016/j.apcatb.2018.04.083
    [18]
    Ma L, Yu W C, Ren L F, et al. Micro-characteristics of low-temperature coal oxidation in CO2/O2 and N2/O2 atmospheres[J]. Fuel, 2019, 246: 259-267. doi: 10.1016/j.fuel.2019.02.073
    [19]
    Starck J, Burg P, Cagniant D, et al. The effect of demineralisation on a lignite surface properties[J]. Fuel, 2004, 83(7/8): 845-850.
    [20]
    Wu H Y, Peng W Q, Wang Z M, et al. Cerium-doped gehlenite supporting silver/silver chloride for continuous photocatalysis[J]. RSC Advances, 2016, 6(44): 37995-38003. doi: 10.1039/C6RA02444K
    [21]
    Chen X N, Wang X H, de Fang. A review on C1s XPS-spectra for some kinds of carbon materials[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(12): 1048-1058.
    [22]
    Song P, Wan C Y, Xie Y L, et al. Stepwise exfoliation of bound rubber from carbon black nanoparticles and the structure characterization[J]. Polymer Testing, 2018, 71: 115-124. doi: 10.1016/j.polymertesting.2018.08.032
    [23]
    Geng Y, Song Y, Zhong M, et al. Influence of the pitch fluoride on the electrical conductivity of the activated carbon cloth as electrodes of the supercapacitor[J]. Materials Letters, 2010, 64(24): 2673-2675. doi: 10.1016/j.matlet.2010.09.009
    [24]
    Bardenhagen I, Fenske M, Fenske D, et al. Distribution of discharge products inside of the lithium/oxygen battery cathode[J]. Journal of Power Sources, 2015, 299: 162-169. doi: 10.1016/j.jpowsour.2015.08.089
    [25]
    Hu Y W. Biomass carbon materials derived from starch and their electrochemical properties[J]. International Journal of Electrochemical Science, 2021: 210359. doi: 10.20964/2021.03.05
    [26]
    Dudric R, Vladescu A, Rednic V, et al. XPS study on La0.67Ca0.33Mn1-xCoxO3 compounds[J]. Journal of Molecular Structure, 2014, 1073: 66-70. doi: 10.1016/j.molstruc.2014.04.065
    [27]
    Lan Q, Sun S R, Wu P, et al. Co-doped CuO/visible light synergistic activation of PMS for degradation of rhodamine B and its mechanism[J]. Journal of Inorganic Materials, 2021, 36(11): 1171. doi: 10.15541/jim20210090
    [28]
    Ding D H, Yang S J, Chen L W, et al. Degradation of norfloxacin by CoFe alloy nanoparticles encapsulated in nitrogen doped graphitic carbon(CoFe@N-GC)activated peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 392: 123725. doi: 10.1016/j.cej.2019.123725
    [29]
    张祥伟, 李春全, 郑水林, 等. 热还原法制备g-C3N4/高岭石复合材料及其光/过硫酸盐协同催化性能[J]. 硅酸盐学报, 2021, 49(7): 1337-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202107009.htm

    Zhang Xiangwei, Li Chunquan, Zheng Shuilin, et al. Photocatalysis coupled with persulfate oxidation over nitrogen vacancies modified g-C3N4/kaolinite composite for highly efficient removal of bisphenol A[J]. Journal of the Chinese Ceramic Society, 2021, 49(7): 1337-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202107009.htm
    [30]
    Chou Y C, Lo S L, Kuo J, et al. Microwave-enhanced persulfate oxidation to treat mature landfill leachate[J]. Journal of Hazardous Materials, 2015, 284: 83-91. doi: 10.1016/j.jhazmat.2014.10.043
    [31]
    Jiang M D, Lu J H, Ji Y F, et al. Bicarbonate-activated persulfate oxidation of acetaminophen[J]. Water Research, 2017, 116: 324-331. doi: 10.1016/j.watres.2017.03.043
    [32]
    Liu N, Ding F, Weng C H, et al. Effective degradation of primary color direct azo dyes using Fe-0 aggregates-activated persulfate process[J]. Journal of Environmental Management, 2018, 206: 565-576.
    [33]
    Wang H P, Wang J, Pi Y C, et al. Double perovskite LaFex Ni1-x O3 nanorods enable efficient oxygen evolution electrocatalysis[J]. Angewandte Chemie: International Ed in English, 2019, 58(8): 2316-2320. doi: 10.1002/anie.201812545
    [34]
    Zhu Y M, Zhang L, Zhao B T, et al. Oxygen defect engineering: improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides(adv. funct. mater. 34/2019)[J]. Advanced Functional Materials, 2019, 29(34): 1970236. doi: 10.1002/adfm.201970236
    [35]
    王莹, 魏成耀, 黄天寅, 等. 氮掺杂碳纳米管活化过一硫酸盐降解酸性橙AO7[J]. 中国环境科学, 2017, 37(7): 2583-2590. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201707023.htm

    Wang Ying, Wei Chengyao, Huang Tianyin, et al. Activation of peroxymonosulfate by nitrogen-doped carbon nanotubes to decolorize acid orange 7[J]. China Environmental Science, 2017, 37(7): 2583-2590. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201707023.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (188) PDF downloads(30) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return