Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Ma Qinyong, Bao Xiaoxuan. SHPB tests and analysis of lunar soil simulant under different negative temperatures and water contents[J]. Journal of Mining Science and Technology, 2023, 8(1): 93-101. doi: 10.19606/j.cnki.jmst.2023.01.009
Citation: Ma Qinyong, Bao Xiaoxuan. SHPB tests and analysis of lunar soil simulant under different negative temperatures and water contents[J]. Journal of Mining Science and Technology, 2023, 8(1): 93-101. doi: 10.19606/j.cnki.jmst.2023.01.009

SHPB tests and analysis of lunar soil simulant under different negative temperatures and water contents

doi: 10.19606/j.cnki.jmst.2023.01.009
  • Received Date: 2022-04-28
  • Rev Recd Date: 2022-10-14
  • Publish Date: 2023-02-28
  • In order to study the dynamic mechanical properties of the frozen lunar soil in the permanent shadow area of the moon, the basaltic lunar soil simulant was used as the research object, and the dynamic impact test was performed on it. The dynamic stress-strain curve, dynamic compressive strength and failure of simulated lunar soil under different negative temperature, different moisture content and different strain rate were studied. The relationship between dynamic compressive strength, dynamic elastic modulus and simulated lunar soil temperature, moisture content and strain rate was analyzed. The test results show that the dynamic compressive strength is positively related to the strain rate; the failure modes are mainly conical shear failure and granular crushing failure; the fragmentation distribution has good fractal characteristics. Provide reference for future research on lunar building materials.
  • loading
  • [1]
    郑永春, 张锋, 付晓辉, 等. 月球上的水: 探测历程与新的证据[J]. 地质学报, 2011, 85(7): 1069-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201107002.htm

    Zheng Yongchun, Zhang Feng, Fu Xiaohui, et al. Water on the moon: exploration history and new evidence[J]. Acta Geologica Sinica, 2011, 85(7): 1069-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201107002.htm
    [2]
    谢和平, 张国庆, 李存宝. 月球恒温层地下空间利用探索构想[J]. 工程科学与技术, 2020, 52(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202001001.htm

    Xie Heping, Zhang Guoqing, Li Cunbao. Scheme of underground space utilization of lunar thermostatic layer[J]. Advanced Engineering Sciences, 2020, 52(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202001001.htm
    [3]
    Cesaretti G, Dini E, de Kestelier X, et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology[J]. Acta Astronautica, 2014, 93: 430-450. doi: 10.1016/j.actaastro.2013.07.034
    [4]
    Davis G, Montes C, Eklund S. Preparation of lunar regolith based geopolymer cement under heat and vacuum[J]. Advances in Space Research, 2017, 59(7): 1872-1885. doi: 10.1016/j.asr.2017.01.024
    [5]
    Fisher E A, Lucey P G, Lemelin M, et al. Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment[J]. Icarus, 2017, 292: 74-85. doi: 10.1016/j.icarus.2017.03.023
    [6]
    Li S, Lucey P G, Milliken R E, et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. PNAS, 2018, 115(36): 8907-8912. doi: 10.1073/pnas.1802345115
    [7]
    Pitcher C, Kömle N, Leibniz O, et al. Investigation of the properties of icy lunar polar regolith simulants[J]. Advances in Space Research, 2016, 57(5): 1197-1208. doi: 10.1016/j.asr.2015.12.030
    [8]
    Atkinson J, Zacny K. Mechanical properties of icy lunar regolith: application to ISRU on the moon and Mars[C]// 16th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. April 9-12, 2018, Cleveland, Ohio. Reston, VA, USA: American Society of Civil Engineers, 2018: 109-120.
    [9]
    Atkinson J, Prasad M, Abbud-Madrid A, et al. Penetration and relaxation behavior of JSC-1A lunar regolith simulant under cryogenic conditions[J]. Icarus, 2020, 346: 113812. doi: 10.1016/j.icarus.2020.113812
    [10]
    刘德赟, 王露斯, 孙启臣, 等. 月球极区冻土模拟月壤钻进试验研究[J]. 科学技术与工程, 2018, 18(25): 256-261. doi: 10.3969/j.issn.1671-1815.2018.25.040

    Liu Deyun, Wang Lusi, Sun Qichen, et al. Drilling experiment of simulated icy soil of lunar polar region[J]. Science Technology and Engineering, 2018, 18(25): 256-261. doi: 10.3969/j.issn.1671-1815.2018.25.040
    [11]
    唐钧跃. 高密实度模拟月壤自适应钻进取芯特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [12]
    何立臣, 王超, 姚伟. 含冰模拟月壤水资源提取实验研究[J]. 航天器环境工程, 2020, 37(5): 511-518. https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ202005016.htm

    He Lichen, Wang Chao, Yao Wei. Experimental study of water resource extraction from frozen lunar regolith simulants[J]. Spacecraft Environment Engineering, 2020, 37(5): 511-518. https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ202005016.htm
    [13]
    杨智颖. 基于ANSYS/Ls-dyna数值模拟的月壤采样冲击破碎研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
    [14]
    何成旦, 李亚胜, 温智, 等. 月球极区冻结模拟月壤物理力学特性研究[J]. 冰川冻土, 2021, 43(6): 1773-1781. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202106013.htm

    He Chengdan, Li Yasheng, Wen Zhi, et al. Study on physical and mechanical properties of frozen simulated lunar soil in lunar polar region[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1773-1781. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202106013.htm
    [15]
    魏久淇, 王明洋, 邱艳宇, 等. 钙质砂动态力学特性试验研究[J]. 振动与冲击, 2018, 37(24): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201824003.htm

    Wei Jiuqi, Wang Mingyang, Qiu Yanyu, et al. Impact compressive response of calcareous sand[J]. Journal of Vibration and Shock, 2018, 37(24): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201824003.htm
    [16]
    Qian Y Q, Xiao L, Yin S, et al. The regolith properties of the Chang'e-5 landing region and the ground drilling experiments using lunar regolith simulants[J]. Icarus, 2020, 337: 113508.
    [17]
    Chang B C, Ann K Y. Development of assessment methods of lunar soil simulants with respect to chemical composition[J]. Advances in Space Research, 2019, 63(8): 2584-2597.
    [18]
    张宇, 陈善雄, 余飞, 等. 低应力水平下CAS-1模拟月壤力学特性试验研究[J]. 岩石力学与工程学报, 2015, 34(1): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501019.htm

    Zhang Yu, Chen Shanxiong, Yu Fei, et al. Experimental study of mechanical properties of lunar soil simulant cas-1 under low stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501019.htm
    [19]
    贺新星, 肖龙, 黄俊, 等. 模拟月壤研究进展及CUG-1A模拟月壤[J]. 地质科技情报, 2011, 30(4): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201104023.htm

    He Xinxing, Xiao Long, Huang Jun, et al. Lunar soil simulant development and lunar soil simulant CUG-1A[J]. Geological Science and Technology Information, 2011, 30(4): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201104023.htm
    [20]
    纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征[J]. 振动与冲击, 2020, 39(13): 176-183, 214. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202013027.htm

    Ji Jiejie, Li Hongtao, Wu Faming, et al. Fractal characteristics of rock fragmentation under impact load[J]. Journal of Vibration and Shock, 2020, 39(13): 176-183, 214. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202013027.htm
    [21]
    凌天龙, 刘殿书, 梁书锋, 等. 花岗岩损伤型黏弹性动态本构模型研究[J]. 矿业科学学报, 2019, 4(5): 403-409. http://kykxxb.cumtb.edu.cn/article/id/239

    Ling Tianlong, Liu Dianshu, Liang Shufeng, et al. Research on damage viscoelastic dynamic constitutive model of granite[J]. Journal of Mining Science and Technology, 2019, 4(5): 403-409. http://kykxxb.cumtb.edu.cn/article/id/239
    [22]
    杨阳, 王建国, 杨仁树, 等. 高应变率下饱水冻结红砂岩变形破坏分析[J]. 岩石力学与工程学报, 2018, 37(S2): 4016-4026. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2023.htm

    Yang Yang, Wang Jianguo, Yang Renshu, et al. Analysis of deformation and fracture of the saturated frozen red sandstone under high strain rate[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4016-4026. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2023.htm
    [23]
    马芹永, 高常辉. 冲击荷载下玄武岩纤维水泥土吸能及分形特征[J]. 岩土力学, 2018, 39(11): 3921-3928, 3968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811003.htm

    Ma Qinyong, Gao Changhui. Energy absorption and fractal characteristics of basalt fiber-reinforced cement-soil under impact loads[J]. Rock and Soil Mechanics, 2018, 39(11): 3921-3928, 3968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811003.htm
    [24]
    施劲松, 许金余, 任韦波, 等. 高温后混凝土冲击破碎能耗及分形特征研究[J]. 兵工学报, 2014, 35(5): 703-710. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201405019.htm

    Shi Jinsong, Xu Jinyu, Ren Weibo, et al. Research on energy dissipation and fractal characteristics of concrete after exposure to elevated temperatures under impact loading[J]. Acta Armamentarii, 2014, 35(5): 703-710. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201405019.htm
    [25]
    刘冬桥, 张晓云, 何满潮, 等. 砂岩冲击岩爆实验碎屑研究[J]. 矿业科学学报, 2018, 3(3): 246-252. http://kykxxb.cumtb.edu.cn/article/id/144

    Liu Dongqiao, Zhang Xiaoyun, He Manchao, et al. Study on sandstone fragments from impact rockburst experiments[J]. Journal of Mining Science and Technology, 2018, 3(3): 246-252. http://kykxxb.cumtb.edu.cn/article/id/144
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (262) PDF downloads(37) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return