Evolution characteristics of elastic energy storage of marble under creep loading
-
Graphical Abstract
-
Abstract
In order to study the energy absorption and transformation characteristics of marble, the release of strain energy and dissipation mechanism during creep process, this paper tested the stress-strain relationship of marble under uniaxial cyclic loading and multi-level creep cyclic loading respectively, and calculated their elastic energy density curves.The power function is used to fit the relationship between elastic energy density and stress of marble.By comparing the test data of the two loading modes, the results showed that the elastic energy density curves of uniaxial cyclic loading and multi-level creep cyclic loading were basically coincident, and they have the same elastic energy density curves, which means neither the creep loading mode nor the uniaxial cyclic loading mode will affect the elastic energy density curve of the marble.Comparing the ratio of elastic energy to external power in two loading modes, the results showed that the marble materials all went through three stages: compaction, stabilization and deterioration.After creep cyclic loading, the elastic energy storage capacity of marble would decrease to 43 % of uniaxial cyclic loading.Correspondingly, its strength also decreased obviously, which was 62 % of uniaxial cyclic loading.If the long-term bearing issue of this kind of marble is taken into account, the maximum stress value should be controlled below the stress that corresponds to the end point of the compaction stage of material.
-
-