Volume 6 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Yang Zhiyong, Yang Xing, Zhang Changwang, Sun Zhengyang, Jiang Yusheng, Shao Xiaokang. Research on theoretical calculation model of shield segments floating amount and floating control measures[J]. Journal of Mining Science and Technology, 2021, 6(5): 591-597, 605. doi: 10.19606/j.cnki.jmst.2021.05.008
Citation: Yang Zhiyong, Yang Xing, Zhang Changwang, Sun Zhengyang, Jiang Yusheng, Shao Xiaokang. Research on theoretical calculation model of shield segments floating amount and floating control measures[J]. Journal of Mining Science and Technology, 2021, 6(5): 591-597, 605. doi: 10.19606/j.cnki.jmst.2021.05.008

Research on theoretical calculation model of shield segments floating amount and floating control measures

doi: 10.19606/j.cnki.jmst.2021.05.008
  • Received Date: 2021-04-01
  • Rev Recd Date: 2021-05-25
  • Publish Date: 2021-10-01
  • The floating of the shield segment will cause the segment to be misaligned and damaged, reducing the overall structural strength, waterproof performance and service life of the tunnel. On the basis of establishing the force model of the segments, by analyzing the force state of the segments, a theoretical calculation model of the segments floating is established. Taking the shield tunneling section ventilation shaft No.3-Caoqiao Station of Beijing Metro's New Airport Line as the engineering background, the abnormal rise of the segment was analyzed. By improving the performance of the synchronous grouting slurry, the floating amount of the tube segment was effectively controlled. And the slurry characteristics before and after the improvement were tested. Finally, based on the results of the slurry test and the theoretical calculation model, the floating volume of the tube segment was calculated. The results show that the theoretical calculation result of segment floating volume is consistent with the actual measured value. The theoretical calculation model in this paper has good accuracy. The segments float up a lot in a short time after it is released from the shield tail. Shortening the setting time of the slurry and improving its early strength are effective measures to control the floatation of the segments.
  • loading
  • [1]
    汤扬屹, 吴贤国, 陈虹宇, 等. 基于云模型与D-S证据理论的盾构施工隧道管片上浮风险评价[J]. 隧道建设: 中英文, 2019, 39(12): 2011-2019. doi: 10.3973/j.issn.2096-4498.2019.12.011

    Tang Yangyi, Wu Xianguo, Chen Hongyu, et al. Evaluation of floating risk of shield tunnel segments based on cloud model and D-S evidence theory[J]. Tunnel Construction, 2019, 39(12): 2011-2019. doi: 10.3973/j.issn.2096-4498.2019.12.011
    [2]
    董林伟, 杨志勇, 江玉生, 等. 暗挖装配式区间管片接缝密封垫老化研究[J]. 矿业科学学报, 2021, 6(2): 196-203. doi: 10.19606/j.cnki.jmst.2021.02.007

    Dong Linwei, Yang Zhiyong, Jiang Yusheng, et al. Study on the gasket durability in the segment joint of subsurface excavated fabricated section[J]. Journal of Mining Science and Technology, 2021, 6(2): 196-203. doi: 10.19606/j.cnki.jmst.2021.02.007
    [3]
    黄仁东, 金浩, 蒙水儒. 基于理想点法的盾构隧道管片上浮致伤诊断[J]. 中国安全科学学报, 2013, 23(1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201301009.htm

    Huang Rendong, Jin Hao, Meng Shuiru. Diagnosis of damage caused by shield tunnel segment floating up based on ideal point method[J]. China Safety Science Journal, 2013, 23(1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201301009.htm
    [4]
    李强, 甘鹏路, 钟小春. 盾构隧道管片壁后注浆厚度对隧道抗浮影响研究[J]. 现代隧道技术, 2019, 56(6): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201906004.htm

    Li Qiang, Gan Penglu, Zhong Xiaochun. Study on effect of backfilling grouting thickness on anti-floating of the shield tunnel[J]. Modern Tunnelling Technology, 2019, 56(6): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201906004.htm
    [5]
    Watanabe K, Sawada R, Koseki J. Uplift mechanism of open-cut tunnel in liquefied ground and simplified method to evaluate the stability against uplifting[J]. Soils and Foundations, 2016, 56(3): 412-426. doi: 10.1016/j.sandf.2016.04.008
    [6]
    叶飞, 朱合华, 何川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. 岩土力学, 2009, 30(5): 1307-1312. doi: 10.3969/j.issn.1000-7598.2009.05.020

    Ye Fei, Zhu Hehua, He Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. Rock and Soil Mechanics, 2009, 30(5): 1307-1312. doi: 10.3969/j.issn.1000-7598.2009.05.020
    [7]
    叶飞, 朱合华, 丁文其, 等. 施工期盾构隧道上浮机理与控制对策分析[J]. 同济大学学报: 自然科学版, 2008, 36(6): 738-743. doi: 10.3321/j.issn:0253-374X.2008.06.006

    Ye Fei, Zhu Hehua, Ding Wenqi, et al. Analysis and control of upward moving of shield tunnel under construction[J]. Journal of Tongji University: Natural Science, 2008, 36(6): 738-743. doi: 10.3321/j.issn:0253-374X.2008.06.006
    [8]
    肖明清, 孙文昊, 韩向阳. 盾构隧道管片上浮问题研究[J]. 岩土力学, 2009, 30(4): 1041-1045, 1056. doi: 10.3969/j.issn.1000-7598.2009.04.031

    Xiao Mingqing, Sun Wenhao, Han Xiangyang. Research on upward moving of segments of shield tunel[J]. Rock and Soil Mechanics, 2009, 30(4): 1041-1045, 1056. doi: 10.3969/j.issn.1000-7598.2009.04.031
    [9]
    舒瑶, 季昌, 周顺华, 等. 考虑地层渗透性的盾构隧道施工期管片上浮预测[J]. 岩石力学与工程学报, 2017, 36(S1): 3516-3524. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1046.htm

    Shu Yao, Ji Chang, Zhou Shunhua, et al. Prediction for shield tunnel segment uplift considering the effect of stratum permeability[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3516-3524. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1046.htm
    [10]
    梁禹, 阳军生, 林辉. 大直径盾构隧道施工阶段管片上浮与受力研究[J]. 现代隧道技术, 2016, 53(3): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201603013.htm

    Liang Yu, Yang Junsheng, Lin Hui. On segment floating and relevant mechanical behaviors during large Diameter shield tunnelling[J]. Modern Tunnelling Technology, 2016, 53(3): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201603013.htm
    [11]
    张君, 赵林, 周佳媚, 等. 盾构隧道管片上浮的机制研究[J]. 铁道标准设计, 2016, 60(10): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201610020.htm

    Zhang Jun, Zhao Lin, Zhou Jiamei, et al. Research on upward moving mechanism for segment of shield tunnel[J]. Railway Standard Design, 2016, 60(10): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201610020.htm
    [12]
    魏纲, 洪杰, 魏新江. 盾构隧道施工阶段管片上浮的力学分析[J]. 岩石力学与工程学报, 2012, 31(6): 1257-1263. doi: 10.3969/j.issn.1000-6915.2012.06.022

    Wei Gang, Hong Jie, Wei Xinjiang. Mechanical analysis of segment floating during shield tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1257-1263. doi: 10.3969/j.issn.1000-6915.2012.06.022
    [13]
    Bezuijen A, Talmon A M, Kaalberg F J, et al. Field measurements of grout pressures during tunnelling of the sophia rail tunnel[J]. Soils and Foundations, 2004, 44(1): 39-48. doi: 10.3208/sandf.44.39
    [14]
    钟小春, 罗近海, 邓有春, 等. 稳定地层盾尾管片壁后注浆窜浆机理及模型试验[J]. 隧道与地下工程灾害防治, 2020, 2(2): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202002009.htm

    Zhong Xiaochun, Luo Jinhai, Deng Youchun, et al. Escaping mechanism of shield tail grouting and its model test during shield tunnelling surrounding rock stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(2): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202002009.htm
    [15]
    Maghous S, Saada Z, Dormieux L, et al. A model for in situ grouting with account for particle filtration[J]. Computers and Geotechnics, 2007, 34(3): 164-174. doi: 10.1016/j.compgeo.2006.11.003
    [16]
    张雨帆. 盾构隧道施工期同步注浆引起隧道上浮及管片错台研究[D]. 成都: 西南交通大学, 2018.
    [17]
    许延春, 张二蒙, 赵霖, 等. 黏度对浆液在裂隙岩体中扩散与充填规律的影响[J]. 矿业科学学报, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008

    Xu Yanchun, Zhang Ermeng, Zhao Lin, et al. Study on the law of influence by slurry viscosity on the fractured aquifer grouting and diffusion[J]. Journal of Mining Science and Technology, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008
    [18]
    韦征, 江玉生. 基于Timoshenko梁的盾构上跨对既有隧道纵向变形影响研究[J]. 矿业科学学报, 2021, 6(1): 30-41. doi: 10.19606/j.cnki.jmst.2021.01.004

    Wei Zheng, Jiang Yusheng. Study on the influence of above-crossing tunneling on the existing shield tunnels based on Timoshenko beam[J]. Journal of Mining Science and Technology, 2021, 6(1): 30-41. doi: 10.19606/j.cnki.jmst.2021.01.004
    [19]
    邱军领, 赖金星, 刘炽, 等. 盾构隧道壁后空洞注浆对管片受力特性的影响[J]. 解放军理工大学学报: 自然科学版, 2016, 17(4): 364-370. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201604010.htm

    Qiu Junling, Lai Jinxing, Liu Chi, et al. Mechanics effects of backing void grouting on shield tunnel segment[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2016, 17(4): 364-370. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201604010.htm
    [20]
    舒瑶, 周顺华, 季昌, 等. 多变复合地层盾构隧道施工期管片上浮实测数据分析与量值预测[J]. 岩石力学与工程学报, 2017, 36(S1): 3464-3474. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1040.htm

    Shu Yao, Zhou Shunhua, Ji Chang, et al. Analysis of shield tunnel segment uplift data and uplift value forecast during tunnel construction in variable composite formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3464-3474. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1040.htm
    [21]
    阙仁波, 王奎华. 复平面上超越方程的数值解法及其应用[J]. 科技通报, 2008, 24(2): 149-153. doi: 10.3969/j.issn.1001-7119.2008.02.001

    Que Renbo, Wang Kuihua. Numerical algorithms for transcendental equations in A complex plane and its applications[J]. Bulletin of Science and Technology, 2008, 24(2): 149-153. doi: 10.3969/j.issn.1001-7119.2008.02.001
    [22]
    Liang Y, Zhang J, Lai Z S, et al. Temporal and spatial distribution of the grout pressure and its effects on lining segments during synchronous grouting in shield tunnelling[J]. European Journal of Environmental and Civil Engineering, 2020, 24(1): 79-96. doi: 10.1080/19648189.2017.1364299
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (672) PDF downloads(45) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return