Xu Hao, Qin Yueping, Wu Fan, et al. Mathematical model and numerical solution of constant pressure adsorption of gas in coal particles[J]. Journal of Mining Science and Technology, 2021, 6(4): 445-452. DOI: 10.19606/j.cnki.jmst.2021.04.009
Citation: Xu Hao, Qin Yueping, Wu Fan, et al. Mathematical model and numerical solution of constant pressure adsorption of gas in coal particles[J]. Journal of Mining Science and Technology, 2021, 6(4): 445-452. DOI: 10.19606/j.cnki.jmst.2021.04.009

Mathematical model and numerical solution of constant pressure adsorption of gas in coal particles

More Information
  • Received Date: December 16, 2020
  • Revised Date: March 09, 2021
  • Available Online: July 04, 2021
  • In order to study the flow mechanism of gas in coal particles, four groups of constant pressure adsorption experiments were carried out at different initial pressures, and the experimental data of cumulative gas adsorption volume content with time were extracted. Based on Darcy theory driven by pressure gradient and new diffusion model driven by the density gradient of free gas, two kinds of mathematical models of gas adsorption at constant pressure were established, and the adsorption process was numerically solved by VB program code, and the simulation data of cumulative adsorption volume content inside coal particles were obtained. By comparing and analyzing the two kinds of simulation results with the experimental data, it is found that numerical calculation results are consistent with the experimental data, thus verifying the accuracy of the numerical simulation. In addition, the key proportional coefficients in the two models with the change of pressure are different. The permeability coefficient is negatively correlated with the pressure, and the microchannel diffusion coefficient does not change with the pressure. It is concluded that the diffusion model driven by the density gradient of free gas is more suitable to describe the gas migration law in coal particles than Darcy's law and Fick's law.
  • [1]
    周爱桃, 张蒙, 王凯, 等. 布尔台矿综放工作面采空区瓦斯运移规律及瓦斯抽采优化研究[J]. 矿业科学学报, 2020, 5(3): 291-301. http://kykxxb.cumtb.edu.cn/article/id/292

    Zhou Aitao, Zhang Meng, Wang Kai, et al. Research on gas migration law and gas drainage parameters optimization in goaf of fully mechanized caving face in Buertai Coal Mine[J]. Journal of Mining Science and Technology, 2020, 5(3): 291-301. http://kykxxb.cumtb.edu.cn/article/id/292
    [2]
    谢生荣, 杨波, 张晴, 等. 低透气性煤层顺层密集钻孔抽采及并管提压系统研究[J]. 矿业科学学报, 2019, 4(1): 34-40. http://kykxxb.cumtb.edu.cn/article/id/194

    Xie Shengrong, Yang Bo, Zhang Qing, et al. Research on lift pressure system with combined pipeline and intensive drill-hole gas drainage along the layer in low permeability coal seam[J]. Journal of Mining Science and Technology, 2019, 4(1): 34-40. http://kykxxb.cumtb.edu.cn/article/id/194
    [3]
    聂百胜, 郭勇义, 吴世跃, 等. 煤粒瓦斯扩散的理论模型及其解析解[J]. 中国矿业大学学报, 2001, 30(1): 19-22. DOI: 10.3321/j.issn:1000-1964.2001.01.005

    Nie Baisheng, Guo Yongyi, Wu Shiyue, et al. Theoretical model of gas diffusion through coal particles and its analytical solution[J]. Journal of China University of Mining & Technology, 2001, 30(1): 19-22. DOI: 10.3321/j.issn:1000-1964.2001.01.005
    [4]
    聂尧, 赵越超. 煤中多组分混合气体竞争吸附研究现状及工程应用[J]. 矿业科学学报, 2020, 5(1): 45-57. http://kykxxb.cumtb.edu.cn/article/id/264

    Nie Yao, Zhao Yuechao. Research status and engineering application of competitive adsorption of multicomponent mixed gases in coal[J]. Journal of Mining Science and Technology, 2020, 5(1): 45-57. http://kykxxb.cumtb.edu.cn/article/id/264
    [5]
    秦跃平, 王翠霞, 王健, 等. 煤粒瓦斯放散数学模型及数值解算[J]. 煤炭学报, 2012, 37(9): 1466-1471. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201209009.htm

    Qin Yueping, Wang Cuixia, Wang Jian, et al. Mathematical model of gas emission in coal particles and the numerical solution[J]. Journal of China Coal Society, 2012, 37(9): 1466-1471. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201209009.htm
    [6]
    刘彦伟. 煤粒瓦斯放散规律、机理与动力学模型研究[D]. 焦作: 河南理工大学, 2011.
    [7]
    秦跃平, 郝永江, 王亚茹, 等. 基于两种数学模型的煤粒瓦斯放散数值解算[J]. 中国矿业大学学报, 2013, 42(6): 923-928. DOI: 10.3969/j.issn.1000-1964.2013.06.005

    Qin Yueping, Hao Yongjiang, Wang Yaru, et al. Numerical solution of gas emission in coal partical based on two kinds of mathematical model[J]. Journal of China University of Mining & Technology, 2013, 42(6): 923-928. DOI: 10.3969/j.issn.1000-1964.2013.06.005
    [8]
    秦跃平, 郝永江, 刘鹏, 等. 封闭空间内煤粒瓦斯解吸实验与数值模拟[J]. 煤炭学报, 2015, 40(1): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201501014.htm

    Qin Yueping, Hao Yongjiang, Liu Peng, et al. Coal particle gas desorption experiment and numerical simulation in enclosed space[J]. Journal of China Coal Society, 2015, 40(1): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201501014.htm
    [9]
    秦跃平, 王健, 郑赟, 等. 煤粒瓦斯变压吸附数学模型及数值解算[J]. 煤炭学报, 2017, 42(4): 923-928. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201704015.htm

    Qin Yueping, Wang Jian, Zheng Yun, et al. Coal particle gas adsorption mathematical model and numerical solution under variable pressures[J]. Journal of China Coal Society, 2017, 42(4): 923-928. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201704015.htm
    [10]
    刘彦伟, 魏建平, 何志刚, 等. 温度对煤粒瓦斯扩散动态过程的影响规律与机理[J]. 煤炭学报, 2013, 38(S1): 100-105. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S1017.htm

    Liu Yanwei, Wei Jianping, He Zhigang, et al. Influence rules and mechanisms of temperature on dynamic process of gas diffusion from coal particles[J]. Journal of China Coal Society, 2013, 38(S1): 100-105. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S1017.htm
    [11]
    李志强, 刘勇, 许彦鹏, 等. 煤粒多尺度孔隙中瓦斯扩散机理及动扩散系数新模型[J]. 煤炭学报, 2016, 41(3): 633-643. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603016.htm

    Li Zhiqiang, Liu Yong, Xu Yanpeng, et al. Gas diffusion mechanism in multi-scale pores of coal particles and new diffusion model of dynamic diffusion coefficient[J]. Journal of China Coal Society, 2016, 41(3): 633-643. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603016.htm
    [12]
    Yue Gaowei, Wang Zhaofeng, Xie Ce, et al. Time-dependent methane diffusion behavior in coal: measurement and modeling[J]. Transport in Porous Media, 2017, 116(1): 319-333. DOI: 10.1007/s11242-016-0776-x
    [13]
    Liu Ting, Lin Baiquan, Yang Wei, et al. Dynamic diffusion-based multifield coupling model for gas drainage[J]. Journal of Natural Gas Science and Engineering, 2017, 44: 233-249. DOI: 10.1016/j.jngse.2017.04.026
    [14]
    程小庆, 王兆丰, 李志强. 动扩散系数新模型下不同粒径构造煤的瓦斯扩散特征[J]. 中国安全生产科学技术, 2016, 12(6): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201606016.htm

    Cheng Xiaoqing, Wang Zhaofeng, Li Zhiqiang. Features of gas diffusion in tectonic coal with different particle sizes by new model of dynamic diffusion coefficient[J]. Journal of Safety Science and Technology, 2016, 12(6): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201606016.htm
    [15]
    张路路, 魏建平, 温志辉, 等. 基于动态扩散系数的煤粒瓦斯扩散模型[J]. 中国矿业大学学报, 2020, 49(1): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001006.htm

    Zhang Lulu, Wei Jianping, Wen Zhihui, et al. Gas diffusion model of coal particle based on dynamic diffusion coefficient[J]. Journal of China University of Mining & Technology, 2020, 49(1): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001006.htm
    [16]
    秦跃平, 刘鹏. 煤粒瓦斯吸附规律的实验研究及数值分析[J]. 煤炭学报, 2015, 40(4): 749-753. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201504007.htm

    Qin Yueping, Liu Peng. Experimental study on gas adsorption law in coal particle and its numerical analysis[J]. Journal of China Coal Society, 2015, 40(4): 749-753. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201504007.htm
    [17]
    Qin Yueping, Xu Hao, Liu Wei, et al. Time and pressure-independent gas transport behavior in a coal matrix: Model development and improvement[J]. Energy & Fuels, 2020, 34(8): 9355-9370. DOI: 10.1021/acs.energyfuels.0c01182
    [18]
    Wang Gongda, Ren Ting, Qi Qingxin, et al. Determining the diffusion coefficient of gas diffusion in coal: Development of numerical solution[J]. Fuel, 2017, 196: 47-58. DOI: 10.1016/j.fuel.2017.01.077
    [19]
    杨其銮. 煤屑瓦斯放散随时间变化规律的初步探讨[J]. 煤矿安全, 1986, 17(4): 3-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ198604001.htm

    Yang Qiluan. Discussion on regular of methane diffusion from coal cuttings with time[J]. Safety in Coal Mines, 1986, 17(4): 3-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ198604001.htm
    [20]
    Sevenster P G. Diffusion of gases through coal[J]. Fuel, 1959, 38(4): 403-418. http://www.researchgate.net/publication/303157080_Diffusion_of_gases_through_coal
    [21]
    Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study. Part Ⅱ: Adsorption rate modeling[J]. Fuel, 1999, 78(11): 1345-1362. DOI: 10.1016/S0016-2361(99)00056-3
    [22]
    刘鹏, 秦跃平, 郝永江. 基于密度差驱动流的非线性瓦斯吸附研究: 实验与数值解算[J]. 煤炭学报, 2018, 43(3): 735-742. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201803016.htm

    Liu Peng, Qin Yueping, Hao Yongjiang. Investigation of non-linear gas adsorption in coal based on density-gradient driven flow: Experiments and numerical solutions[J]. Journal of China Coal Society, 2018, 43(3): 735-742. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201803016.htm
    [23]
    Liu Wei, He Chao, Qin Yueping, et al. Inversion of gas permeability coefficient of coal particle based on Darcy's permeation model[J]. Journal of Natural Gas Science and Engineering, 2018, 50: 240-249. DOI: 10.1016/j.jngse.2017.12.017

Catalog

    Article Metrics

    Article views (624) PDF downloads (29) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return