Volume 6 Issue 3
May  2021
Turn off MathJax
Article Contents
Chu Xiaowei, Ju Wenjun, Fu Yukai. Study on pitting mechanism of rebar rockbolt in highly-mineralized mine water[J]. Journal of Mining Science and Technology, 2021, 6(3): 305-313. doi: 10.19606/j.cnki.jmst.2021.03.007
Citation: Chu Xiaowei, Ju Wenjun, Fu Yukai. Study on pitting mechanism of rebar rockbolt in highly-mineralized mine water[J]. Journal of Mining Science and Technology, 2021, 6(3): 305-313. doi: 10.19606/j.cnki.jmst.2021.03.007

Study on pitting mechanism of rebar rockbolt in highly-mineralized mine water

doi: 10.19606/j.cnki.jmst.2021.03.007
  • Received Date: 2020-11-07
  • Rev Recd Date: 2021-01-15
  • Publish Date: 2021-06-01
  • Corrosion and abnormal failure of rockbolts often occur in the mine water and complex environment.It is found that local corrosion such as pitting is usually the main origin of corrosion failure.Pitting process and mechanism in simulating corrosive mine water of four rockbolts were tested and analyzed with a comprehensive method including metallographic examination, electrochemical experiments and video microscope.The results showed that rockbolt steel was prone to pitting corrosion due to the inclusions.The pitting mechanism was as follows: The inclusions were preferentially dissolved, producing granular corrosion products and forming interface grooves.Local acidification in grooves accelerated the dissolution and exfoliation of matrix and inclusions, which produced etching pits.The acceleration effect of interface grooves on corrosion was verified by the comparison of polarization curves of different electrodes.
  • loading
  • [1]
    吴拥政, 褚晓威, 吴建星, 等. 强力锚杆杆体断裂失效的微细观试验研究[J]. 煤炭学报, 2017, 42(3): 574-581. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201703004.htm

    Wu Yongzheng, Chu Xiaowei, Wu Jianxing, et al. Micro-mesoscopic test on fracture failure of intensive rock bolts[J]. Journal of China Coal Society, 2017, 42(3): 574-581. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201703004.htm
    [2]
    李雨, 关蕾, 王冠, 等. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201903002.htm

    Li Yu, Guan Lei, Wang Guan, et al. Influence of mechanical stresses on pitting corrosion of stainless steel[J]. Journal of Chinese Society for Corrosion and Protection, 2019, 39(3): 215-226. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201903002.htm
    [3]
    Mai W J, Soghrati S. A phase field model for simulating the stress corrosion cracking initiated from pits[J]. Corrosion Science, 2017, 125: 87-98. doi: 10.1016/j.corsci.2017.06.006
    [4]
    Chen J, Diao B, He J J, et al. Equivalent surface defect model for fatigue life prediction of steel reinforcing bars with pitting corrosion[J]. International Journal of Fatigue, 2018, 110: 153-161. doi: 10.1016/j.ijfatigue.2018.01.019
    [5]
    Roberge P R. Handbook of corrosion engineering[M]. New York: McGraw-Hill, 2000.
    [6]
    Ramamurthy S, Atrens A. Stress corrosion cracking of high-strength steels[J]. Corrosion Reviews, 2013, 31(1): 1-31. doi: 10.1515/corrrev-2012-0018
    [7]
    范颖芳, 周晶. 考虑蚀坑影响的锈蚀钢筋力学性能研究[J]. 建筑材料学报, 2003, 6(3): 248-252. doi: 10.3969/j.issn.1007-9629.2003.03.006

    Fan Yingfang, Zhou Jing. Mechanical property of rusty rebar considering the effects of corrosion pits[J]. Journal of Building Materials, 2003, 6(3): 248-252. doi: 10.3969/j.issn.1007-9629.2003.03.006
    [8]
    叶继红, 申会谦, 薛素铎. 点蚀孔腐蚀钢构件力学性能劣化简化分析方法[J]. 哈尔滨工业大学学报, 2016, 48(12): 70-75. doi: 10.11918/j.issn.0367-6234.2016.12.009

    Ye Jihong, Shen Huiqian, Xue Suduo. Simplified analytical method of mechanical property degradation for steel members with pitting corrosion[J]. Journal of Harbin Institute of Technology, 2016, 48(12): 70-75. doi: 10.11918/j.issn.0367-6234.2016.12.009
    [9]
    黄彦良, 余秀明. 高强度钢浪花飞溅区点蚀行为与机理[M]. 北京: 科学出版社, 2016.
    [10]
    Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions[J]. Corrosion Science, 2007, 49(3): 1394-1407. doi: 10.1016/j.corsci.2006.08.016
    [11]
    Pardo A, Merino M C, Coy A E, et al. Pitting corrosion behaviour of austenitic stainless steels-combining effects of Mn and Mo additions[J]. Corrosion Science, 2008, 50(6): 1796-1806. doi: 10.1016/j.corsci.2008.04.005
    [12]
    Kaneko M, Senuma T. Effects of S content and surface finish on pitting corrosion of austenitic stainless steels containing Mo in chloride and bromide solutions[J]. ISIJ International, 2005, 45(9): 1331-1334. doi: 10.2355/isijinternational.45.1331
    [13]
    Hassell R, Villaescusa E, Thompson A G, et al. Corrosion assessment of ground support systems[C]// Proceedings of the 5th International Symposium on Ground Support: Ground Support in Mining and Underground Construction. London: Taylor and Francis Group, 2004, 529-542.
    [14]
    Corrosion Institute of Southern Africa. Corrosion Control in Southern Africa[M]. South Africa: Mintek, 1994.
    [15]
    陈学群, 常万顺, 陈德斌. 碳钢中夹杂物诱发点蚀的规律和特性研究[J]. 海军工程大学学报, 2004, 16(6): 30-36. doi: 10.3969/j.issn.1009-3486.2004.06.006

    Chen Xuequn, Chang Wanshun, Chen Debin. Law and feature of pitting caused by inclusion in carbon steel[J]. Journal of Naval University of Engineering, 2004, 16(6): 30-36. doi: 10.3969/j.issn.1009-3486.2004.06.006
    [16]
    张春亚, 胡裕龙, 王国荣, 等. 低碳钢点蚀诱发部位的实验研究[J]. 腐蚀科学与防护技术, 2007, 19(3): 174-177. doi: 10.3969/j.issn.1002-6495.2007.03.006

    Zhang Chunya, Hu Yulong, Wang Guorong, et al. A study on pitting initiation site of carbon steels[J]. Corrosion Science and Protection Technology, 2007, 19(3): 174-177. doi: 10.3969/j.issn.1002-6495.2007.03.006
    [17]
    张春亚, 陈学群, 陈德斌, 等. 不同低碳钢的点蚀诱发敏感性及诱发机理研究[J]. 中国腐蚀与防护学报, 2001, 21(5): 265-272 doi: 10.3969/j.issn.1005-4537.2001.05.002

    Zhang Chunya, Chen Xuequn, Chen Debin, et al. Research of pitting susceptibility in low carbon steels and mechanism of pitting initiation[J]. Journal of Chinese Society for Corrosion and Protection, 2001, 21(5): 265-272 doi: 10.3969/j.issn.1005-4537.2001.05.002
    [18]
    武会宾, 王迪, 梁金明, 等. 夹杂物对低合金钢在酸性Cl-溶液环境中点蚀行为的影响[J]. 材料热处理学报, 2014, 35(12): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201412031.htm

    Wu Huibin, Wang Di, Liang Jinming, et al. Influence of inclusion on pitting corrosion behavior of low-alloy steel for bottom plates of cargo oil tanks[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201412031.htm
    [19]
    范益, 杨文秀, 杨英. 低合金钢中非金属夹杂物引起的点蚀初期行为研究[J]. 全面腐蚀控制, 2017, 31(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-QMFK201701021.htm

    Fan Yi, Yang Wenxiu, Yang Ying. Research on initial pitting behavior caused by non metallic inclusions in low alloy steels[J]. Total Corrosion Control, 2017, 31(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-QMFK201701021.htm
    [20]
    刘青. 304不锈钢中典型夹杂物诱发腐蚀行为研究[D]. 北京: 北京科技大学, 2018.
    [21]
    张弛, 张双杰, 冯捷, 等. 硫化物夹杂对钢点蚀行为的影响[J]. 金属热处理, 2016, 41(9): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201609013.htm

    Zhang Chi, Zhang Shuangjie, Feng Jie, et al. Effect of sulfide inclusions on pitting behavior of steel[J]. Heat Treatment of Metals, 2016, 41(9): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201609013.htm
    [22]
    Spearing A J S, Mondal K, Bylapudi G. The corrosion of rock bolts and a method to quantify the corrosion potential in mines[J]. CIM Journal, 2010, 1(3): 213-220. http://www.researchgate.net/publication/269106636_The_Corrosion_Of_Rock_Bolts_And_A_Method_To_Quantify_The_Corrosion_Potential_In_Mines
    [23]
    Gamboa E, Atrens A. Material influence on the stress corrosion cracking of rock bolts[J]. Engineering Failure Analysis, 2005, 12(2): 201-235. doi: 10.1016/j.engfailanal.2004.07.002
    [24]
    Craig P, Serkan S, Hagan P, et al. Investigations into the corrosive environments contributing to premature failure of Australian coal mine rock bolts[J]. International Journal of Mining Science and Technology, 2016, 26(1): 59-64. doi: 10.1016/j.ijmst.2015.11.011
    [25]
    Aziz N, Craig P, Nemcik J, et al. Rock bolt corrosion-an experimental study[J]. Mining Technology, 2014, 123(2): 69-77. doi: 10.1179/1743286314Y.0000000060
    [26]
    Wu S S, Ramandi H L, Chen H H, et al. Mineralogically influenced stress corrosion cracking of rockbolts and cable bolts in underground mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 109-116. doi: 10.1016/j.ijrmms.2019.04.011
    [27]
    王小伟, 朱杰兵, 李聪. pH和O2协同作用下预应力锚杆腐蚀损伤行为试验研究[J]. 岩土力学, 2019, 40(11): 4306-4312, 4370. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911021.htm

    Wang Xiaowei, Zhu Jiebing, Li Cong. Experimental study on prestressed anchor bars corrosion damage behavior under the synergistic effect of pH and O2[J]. Rock and Soil Mechanics, 2019, 40(11): 4306-4312, 4370. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911021.htm
    [28]
    赵健, 冀文政, 曾宪明, 等. 应力腐蚀对锚杆使用寿命影响的试验研究[J]. 岩石力学与工程学报, 2007, 26(S1): 3427-3431. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1126.htm

    Zhao Jian, Ji Wenzheng, Zeng Xianming, et al. Experimental study on durableness of anchor with stress corrosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3427-3431. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1126.htm
    [29]
    朱乾坤. 煤矿巷道树脂锚杆支护系统腐蚀现象试验研究[D]. 焦作: 河南理工大学, 2017.
    [30]
    Gamboa E, Atrens A. Environmental influence on the stress corrosion cracking of rock bolts[J]. Engineering Failure Analysis, 2003, 10(5): 521-558. doi: 10.1016/S1350-6307(03)00036-0
    [31]
    Vandermaat D, Saydam S, Hagan P C, et al. Examination of rockbolt stress corrosion cracking utilising full size rockbolts in a controlled mine environment[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 81: 86-95. doi: 10.1016/j.ijrmms.2015.11.007
    [32]
    Kang H, Wu Y, Gao F, et al. Fracture characteristics in rock bolts in underground coal mine roadways[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 105-112. doi: 10.1016/j.ijrmms.2013.04.006
    [33]
    靳德武, 葛光荣, 张全, 等. 高矿化度矿井水节能脱盐新技术[J]. 煤炭科学技术, 2018, 46(9): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201809003.htm

    Jin Dewu, Ge Guangrong, Zhang Quan, et al. New energy-saving desalination technology of highly-mineralized mine water[J]. Coal Science and Technology, 2018, 46(9): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201809003.htm
    [34]
    Lin B, Hu R, Ye C, et al. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes[J]. Electrochimica Acta, 2010, 55(22): 6542-6545. doi: 10.1016/j.electacta.2010.06.024
    [35]
    赵景茂, 左禹, 熊金平. 碳钢在点蚀/缝隙腐蚀闭塞区模拟溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2002, 22(4) : 193-197. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF200204000.htm

    Zhao Jingmao, Zuo Yu, Xiong Jinping. Corrosion behavior of mild steel in simulated solutions within pits and crevices[J]. Journal of Chinese Society for Corrosion and Protection, 2002, 22(4): 193-197. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF200204000.htm
    [36]
    陈华辉, 潘俊艳, 马峰, 等. 富锌防腐涂层在煤矿设备的应用及防腐机理研究[J]. 矿业科学学报, 2016, 1(1): 74-81. http://kykxxb.cumtb.edu.cn/article/id/12

    Chen Huahui, Pan Junyan, Ma Feng, et al. Corrosive protection mechanism of Zinc-rich coatings and application in coal mining equipment[J]. Journal of Mining Science and Technology, 2016, 1(1): 74-81. http://kykxxb.cumtb.edu.cn/article/id/12
    [37]
    魏洁, 董俊华, 柯伟. 新型化学剂快速冷却热轧螺纹钢的防锈性能研究[J]. 腐蚀科学与防护技术, 2009, 21(5): 468-471. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ200905009.htm

    Wei Jie, Dong Junhua, Ke Wei. Corrosion resistance of hot rolled rebar quenched with a new chemical reagent[J]. Corrosion Science and Protection Technology, 2009, 21(5): 468-471. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ200905009.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (441) PDF downloads(23) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return