Adaptive control of setting load of hydraulic support based on BP neural network PID
-
Graphical Abstract
-
Abstract
The setting load of hydraulic support plays an important role in the roofcontrolThere are two methods to control the setting load of hydraulic support,one is openloop control by manual control valve of three position four port,the other is pilot control by solenoid directional control valve of two position three portHowever,these two methods can hardly make the setting load reach the expected value and remain stableEven when the expected value is reached,pressure drop and fluctuation generally existBased on this,a mathematical model of electrohydraulic force control system is established,then the stability of the system is analyzed by using MATLABIt is obtained that there are no openloop zeros and poles in the right half S plane of the PoleZero diagram of the system,so the system is a minimum phase system;the number of cycles of counterclockwise winding(-1,j0) from the Nyquist diagram is 0,and the system phase margin is 941° and the amplitude margin is 107 dB,so the system is stable;the step response is stable for 115 s,the impulse response is stable for 90 sAn adaptive PID control method based on BP Neural Network is proposed,and a threelayer neural network control model is establishedQuadratic performance index is used to control errorThe weight coefficients of the output and hidden layers are updated by using supervised Hebb learning rules and gradient descent algorithmThen three control parameters of the PID controller are obtained by trainingThe simulation results show that:it takes about 885 s for the setting load to reach the expected value and maintain stability when the expected input is step signal,and 91 s when the expected input is the square wave signalCompared with no BP neural network PID control,the response time is increased by about 13 times.
-
-