留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化铅电极改性及电催化降解焦化废水中蒽

章丽萍 袁合霞 安逸云 王晶 段梦楠 雷文波 王丽芳

章丽萍, 袁合霞, 安逸云, 王晶, 段梦楠, 雷文波, 王丽芳. 二氧化铅电极改性及电催化降解焦化废水中蒽[J]. 矿业科学学报, 2024, 9(2): 286-294. doi: 10.19606/j.cnki.jmst.2024.02.015
引用本文: 章丽萍, 袁合霞, 安逸云, 王晶, 段梦楠, 雷文波, 王丽芳. 二氧化铅电极改性及电催化降解焦化废水中蒽[J]. 矿业科学学报, 2024, 9(2): 286-294. doi: 10.19606/j.cnki.jmst.2024.02.015
ZHANG Liping, YUAN Hexia, AN Yiyun, WANG Jing, DUAN Mengnan, LEI Wenbo, WANG Lifang. Modification of lead dioxide electrode and electrocatalytic degradation of anthracene in coking wastewater[J]. Journal of Mining Science and Technology, 2024, 9(2): 286-294. doi: 10.19606/j.cnki.jmst.2024.02.015
Citation: ZHANG Liping, YUAN Hexia, AN Yiyun, WANG Jing, DUAN Mengnan, LEI Wenbo, WANG Lifang. Modification of lead dioxide electrode and electrocatalytic degradation of anthracene in coking wastewater[J]. Journal of Mining Science and Technology, 2024, 9(2): 286-294. doi: 10.19606/j.cnki.jmst.2024.02.015

二氧化铅电极改性及电催化降解焦化废水中蒽

doi: 10.19606/j.cnki.jmst.2024.02.015
基金项目: 

国家黄河流域生态保护和高质量发展联合研究中心 2022-YRUC-01-0203

河北省自然科学基金 E2021402015

详细信息
    作者简介:

    章丽萍(1977—),女,江西新余人,副教授,博士生导师,主要从事煤炭行业环境保护、水污染控制方面的教学与科研工作。Tel:010-62339192,E-mail:haozimei77@163.com

  • 中图分类号: TD989; X703.1

Modification of lead dioxide electrode and electrocatalytic degradation of anthracene in coking wastewater

  • 摘要: 为了研究电催化对焦化废水中污染物的降解效果,采用电沉积法制备了Ti/PbO2、Ti/PANI/PbO2和Ti/PANI/PbO2-Ce三种电极,对电极进行扫描电镜和X射线衍射表征、电化学性能测试、产羟基自由基(·OH)能力测试和加速寿命测试。结果表明,经聚苯胺(PANI)和铈(Ce)改性的Ti/PANI/PbO2-Ce电极具有更好的表面形貌和更高的催化活性,能产生更多的·OH,析氧电位为1.83 V,加速寿命时间为720 min。采用Ti/PANI/PbO2-Ce电极降解焦化废水中的蒽,考察了主要因素对降解效果的影响,得到蒽的最佳降解条件为电压14 V,板间距1.0 cm,电解质浓度0.35 mol/L,反应时间120 min,pH值10。Ti/PANI/PbO2-Ce电极显示了良好的电催化性能。
  • 图  1  蒽的标准曲线

    Figure  1.  Standard curve of anthracene

    图  2  二氧化铅电极SEM图

    Figure  2.  SEM diagram of lead dioxide electrode

    图  3  二氧化铅电极的XRD图

    Figure  3.  XRD diagram of lead dioxide electrode

    图  4  二氧化铅电极的CV图

    Figure  4.  CV diagram of lead dioxide electrode

    图  5  二氧化铅电极的LSV图

    Figure  5.  LSV diagram of lead dioxide electrode

    图  6  二氧化铅电极·OH生成能力的荧光强度曲线

    Figure  6.  Fluorescence intensity curve of ·OH formation ability of lead dioxide electrode

    图  7  二氧化铅电极的加速寿命曲线

    Figure  7.  Accelerated life curve of lead dioxide electrode

    图  8  电压对蒽降解的影响

    Figure  8.  Influence of voltage on anthracene degradation

    图  9  Na2SO4电解质浓度对蒽降解的影响

    Figure  9.  Influence of Na2SO4 electrolyte concentration on anthracene degradation

    图  10  初始pH值对蒽降解的影响

    Figure  10.  Influence of initial pH on anthracene degradation

    图  11  板间距对蒽降解的影响

    Figure  11.  Influence of plate spacing on anthracene degradation

    图  12  初始浓度对蒽降解的影响

    Figure  12.  Influence of initial concentration on anthracene degradation

    图  13  反应时间对蒽降解的影响

    Figure  13.  Influence of reaction time on anthracene degradation

    表  1  某焦化企业废水中多环芳烃浓度

    Table  1.   Concentration of polycyclic aromatic hydrocarbons in wastewater from a coking enterprises

    多环芳烃 浓度/(μg·L-1)
    93.65
    73.64
    苯并[a]蒽 56.72
    43.89
    苯并[a]芘 37.55
    31.86
    茚并[g,h,i]芘 26.54
    苯并[k]荧蒽 23.87
    下载: 导出CSV
  • [1] 刘伟. 高效菌强化OAO工艺处理焦化废水的试验研究[D]. 武汉科技大学, 2011.

    LIU Wei. Experimental Study on the application of highly effecive bacteria to enhance OAO process in treatment of coke plant wastewater[D]. Wuhan: Wuhan University of Science and Technology, 2011.
    [2] 王娟, 刘玉学, 范迪. 焦化废水深度处理试验研究[J]. 环境工程学报, 2009, 3(10): 1804-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200910016.htm

    WANG Juan, LIU Yuxue, FAN Di. Experimental research on advanced treatment process of coking-plant wastewater[J]. Chinese Journal of Environmental Engineering, 2009, 3(10): 1804-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200910016.htm
    [3] YANG W L, WANG J C, HUA M, et al. Characterization of effluent organic matter from different coking wastewater treatment plants[J]. Chemosphere, 2018, 203: 68-75. doi: 10.1016/j.chemosphere.2018.03.167
    [4] QIN Z, WEI C, WEI T, et al. Evolution of biochemical processes in coking wastewater treatment: A combined evaluation of material and energy efficiencies and secondary pollution[J]. Science of the Total Environment, 2022, 807: 151072. doi: 10.1016/j.scitotenv.2021.151072
    [5] 付江涛, 王黎, 王伟, 等. 焦化废水树脂吸附及深度处理回用[J]. 工业水处理, 2017, 37(5): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC201705026.htm

    FU Jiangtao, WANG Li, WANG Wei, et al. Advancement treatment and reuse of coking wastewater by adsorption resin[J]. Industrial Water Treatment, 2017, 37(5): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC201705026.htm
    [6] DU Z P, GONG Z P, QI W H, et al. Coagulation performance and floc characteristics of poly-ferric-titanium-silicate-chloride in coking wastewater treatment[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2022, 642: 128413.
    [7] 齐文豪, 王淑军, 王旭明, 等. 聚硅酸铁钛絮凝剂制备及焦化废水混凝处理试验[J]. 净水技术, 2021, 40(4): 101-105, 120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS202104021.htm

    QI Wenhao, WANG Shujun, WANG Xuming, et al. Preparation of Polyferric Titanium Silicate Flocculant and the Experiment of Coagulation for Coking Wastewater Treatment[J]. Water Purification Technology, 2021, 40(4): 101-105, 120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS202104021.htm
    [8] FAN W L, SUN G X, WANG Q, et al. Identifying the critical activated carbon properties affecting the adsorption of effluent organic matter from bio-treated coking wastewater[J]. Science of the Total Environment, 2023, 871: 161968. doi: 10.1016/j.scitotenv.2023.161968
    [9] CHOUDHARY R K, CHAUDHARI P K. Removal of pollutants of coking wastewater by adsorption[J]. Desalination and Water Treatment, 2017, 75: 45-57. doi: 10.5004/dwt.2017.20509
    [10] 洪苡辰, 刘永泽, 张立秋, 等. 臭氧催化氧化深度处理焦化废水效能研究[J]. 给水排水, 2017, 53(12): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJS201712016.htm

    HONG Yichen, LIU Yongze, ZHANG Liqiu, et al. Advanced treatment of coking wastewater by catalytic ozonation[J]. Water & Wastewater Engineering, 2017, 53(12): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJS201712016.htm
    [11] GAO X Y, ZHANG H, WANG Y Q, et al. Study on preparation of a novel needle coke heterogeneous electro-Fenton cathode for coking wastewater treatment[J]. Chemical Engineering Journal, 2023, 455: 140696. doi: 10.1016/j.cej.2022.140696
    [12] SHI W, LIU X J, LIU Y L, et al. Catalytic ozonation of hard COD in coking wastewater with Fe2O3/Al2O3-SiC: From catalyst design to industrial application[J]. Journal of Hazardous Materials, 2023, 447: 130759. doi: 10.1016/j.jhazmat.2023.130759
    [13] 迟明超, 运晓静, 罗斌, 等. DSA电极的制备及应用的研究进展[J]. 应用化工, 2021, 50(2): 498-503. doi: 10.3969/j.issn.1671-3206.2021.02.048

    CHI Mingchao, YUN Xiaojing, LUO Bin, et al. Research progress on preparation and application of DSA electrode[J]. Applied Chemical Industry, 2021, 50(2): 498-503. doi: 10.3969/j.issn.1671-3206.2021.02.048
    [14] BI Q, ZHANG Z K, SUN Y F, et al. Preparation and performance of highly active and long-life mesopore Ti/SnO2-Sb electrodes for electrochemical degradation of phenol[J]. Journal of Alloys and Compounds, 2021, 889: 161657. doi: 10.1016/j.jallcom.2021.161657
    [15] DONG G H, DONG L LLANG K, et al. Insight into the high-efficient electrocatalytic elimination toward antibiotics via introducing FeTiO3 interlayer under Ce-PbO2 coating[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108453. doi: 10.1016/j.jece.2022.108453
    [16] LAN H, TAO Q B, MA N W, et al. Electrochemical oxidation of lamivudine using graphene oxide and Yb co-modified PbO2 electrodes: characterization, influencing factors and degradation mechanisms[J]. Separation and Purification Technology, 2022, 301: 121856. doi: 10.1016/j.seppur.2022.121856
    [17] YAO Y W, REN B L, YANG Y, et al. Preparation and electrochemical treatment application of Ce-PbO2/ZrO2 composite electrode in the degradation of acridine orange by electrochemical advanced oxidation process[J]. Journal of Hazardous Materials, 2019, 361: 141-151. doi: 10.1016/j.jhazmat.2018.08.081
    [18] 罗纲, 雷国元, 周达, 等. Ti/TiO2NTs/PANI/PbO2-CNTs电极的制备及煤气管道水封水的预处理[J]. 化工环保, 2022, 42(2): 184-189. https://www.cnki.com.cn/Article/CJFDTOTAL-HGHB202202009.htm

    LUO Gang, LEI Guoyuan, ZHOU Da, et al. Preparation of Ti/TiO2NTs/PANI/PbO2-CNTs electrode andpretreatment of water seal water of gas pipeline[J]. Environmental Protection of Chemical Industry, 2022, 42(2): 184-189. https://www.cnki.com.cn/Article/CJFDTOTAL-HGHB202202009.htm
    [19] 王燕, 赵瑞阳, 朱怀工, 等. 新型Ce掺杂Ti/SnO2-Sb电极的制备及其性能研究[J]. 现代化工, 2016, 36(11): 90-93, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201611022.htm

    WANG Yan, ZHAO Ruiyang, ZHU Huaigong, et al. Preparation of a novel Ce-doped Ti/SnO2-Sb electrode and its electro-catalytic performance[J]. Modern Chemical Industry, 2016, 36(11): 90-93, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201611022.htm
    [20] 张志军, 成鹏, 谢智翔, 等. 改性钛基二氧化铅电极催化氧化降解水中四环素[J]. 工业水处理, 2023, 43(3): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC202303008.htm

    ZHANG Zhijun, CHENG Peng, XIE Zhixiang, et al. Catalytic oxidation degradation of tetracycline in water by modified titanium-based lead dioxide electrode[J]. Industrial Water Treatment, 2023, 43(3): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC202303008.htm
    [21] XU Z S, LIU H, NIU J F, et al. Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater[J]. Journal of Hazardous Materials, 2017, 327: 144-152.
    [22] 张传香, 何建平, 赵桂网, 等. 掺碳的钠离子电池正极材料NaVPO4F的电化学性能[J]. 无机化学学报, 2007, 23(4): 649-654. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX200704015.htm

    ZHANG Chuanxiang, HE Jianping, ZHAO Guiwang, et al. Electrochemical Characteristics of C-doped NaVPO4F Cathode Material for Sodium-ion Battery[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(4): 649-654. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX200704015.htm
    [23] PERIYASAMY S, MUTHUCHAMY M. Electrochemical oxidation of paracetamol in water by graphite anode: Effect of pH, electrolyte concentration and current density[J]. Journal of Environmental Chemical Engineering, 2018, 6(6): 7358-7367.
    [24] TAN C, XIANG B, LI Y J, et al. Preparation and characteristics of a nano-PbO2 anode for organic wastewater treatment[J]. Chemical Engineering Journal, 2011, 166(1): 15-21.
    [25] 倪智丽. Nd掺杂钛基PbO2电极制备及降解双酚S研究[D]. 杭州: 浙江大学, 2020.

    NI Zhili. The preparation of Nd doped PbO2 electrodes and the electrochemical oxidation of BPS[D]. Hangzhou: Zhejiang University, 2020.
    [26] SHIN Y U, YOO H Y, AHN Y Y, et al. Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: Multiple pathways for sulfate radical generation[J]. Applied Catalysis B-Environmental, 2019, 254: 156-165.
    [27] 束蒋成. 改性钛基二氧化铅电极电化学降解水中四环素的研究[D]. 常州: 常州大学, 2022.

    SHU Jiangcheng. Electrochemical degradation of tetracycline in water by modified titanium based lead dioxide electrode[D]. CHangzhou: Changzhou University, 2022.
    [28] XIE J, YANG H Z, WANG X Q, et al. ZIF-8/electro-reduced graphene oxide nanocomposite for highly electrocatalytic oxidation of hydrazine in industrial wastewater[J]. Microchemical Journal, 2021, 168: 106521.
    [29] NIU J F, LI Y, SHANG E X, et al. Electrochemical oxidation of perfluorinated compounds in water[J]. Chemosphere, 2016, 146: 526-538.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  8
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-09
  • 修回日期:  2023-12-01
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回