留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含细颗粒悬浮物矿井水的混凝沉淀参数优化

侯嫔 秦浩铭 刘昊 徐东莹 贾舒涵 张周爱 王建兵

侯嫔, 秦浩铭, 刘昊, 徐东莹, 贾舒涵, 张周爱, 王建兵. 含细颗粒悬浮物矿井水的混凝沉淀参数优化[J]. 矿业科学学报, 2024, 9(2): 278-285. doi: 10.19606/j.cnki.jmst.2024.02.014
引用本文: 侯嫔, 秦浩铭, 刘昊, 徐东莹, 贾舒涵, 张周爱, 王建兵. 含细颗粒悬浮物矿井水的混凝沉淀参数优化[J]. 矿业科学学报, 2024, 9(2): 278-285. doi: 10.19606/j.cnki.jmst.2024.02.014
HOU Pin, QIN Haoming, LIU Hao, XV Dongying, JIA Shuhan, ZHANG Zhouai, WANG Jianbing. Parameter optimization of coagulation and sedimentation for fine suspended solids removal from mine water[J]. Journal of Mining Science and Technology, 2024, 9(2): 278-285. doi: 10.19606/j.cnki.jmst.2024.02.014
Citation: HOU Pin, QIN Haoming, LIU Hao, XV Dongying, JIA Shuhan, ZHANG Zhouai, WANG Jianbing. Parameter optimization of coagulation and sedimentation for fine suspended solids removal from mine water[J]. Journal of Mining Science and Technology, 2024, 9(2): 278-285. doi: 10.19606/j.cnki.jmst.2024.02.014

含细颗粒悬浮物矿井水的混凝沉淀参数优化

doi: 10.19606/j.cnki.jmst.2024.02.014
基金项目: 

山西省重点研发计划 202102090301006

中央高校越崎青年学者“资助计划” 2020QN09

国家重点研发计划 2018YFC0406404-5

神华宝日希勒能源有限公司研究项目 CSIEZC190104242

详细信息
    作者简介:

    侯嫔(1985—),女,内蒙古包头人,副教授,博士,主要从事新型给水、排水处理方面的研究工作。Tel: 15001063238,E-mail:phou.beijing@cumtb.edu.cn

  • 中图分类号: X751

Parameter optimization of coagulation and sedimentation for fine suspended solids removal from mine water

  • 摘要: 针对宝日希勒露天煤矿矿井水中悬浮颗粒物粒径小、难去除的问题,采用单因素与正交实验方法确定了混凝沉淀工艺的最佳参数,分析了矿井水中细颗粒物的混凝机理。结果表明,混凝沉淀的最佳工艺参数为聚合氯化铝(PAC)投加量50 mg/L,非离子型聚丙烯酰胺(NPAM)投加量5.0 mg/L,快速搅拌(300 r/min)时间1 min,慢速搅拌(50 r/min)时间8 min,静置时间5 min;在最佳工艺条件下,悬浮物(SS)质量浓度为5.0 mg/L,去除率为99.1 %,相比单独投加PAC时,10 μm以下的细颗粒物去除率提高了25.9 %,矿井水的ζ电位由-40.9 mV降低至-16.3 mV,说明细颗粒物的混凝机理主要为PAC吸附电中和作用和聚丙烯酰胺(PAM)吸附架桥作用。
  • 图  1  单独投加混凝剂对混凝沉淀效果的影响

    (ρ(SS0)=540 mg/L;n1=300 r/min;t1=2 min;n2=50 r/min;t2=8 min;t3=10 min)

    Figure  1.  Effects of different reaction conditions on the efficiency of coagulation and sedimentation with PAC alone

    图  2  PAC/PAM复配投加对混凝沉淀效果的影响

    ρ(SS0)=540 mg/L;ρ(PAC)=50 mg/L;n1=300 r/min;t1=2 min;n2=50 r/min;t2=8 min; t3=10 min

    Figure  2.  Effect of PAC/PAM ratio on the efficiency of coagulation and sedimentation

    图  3  单因素实验与正交实验的混凝沉淀效果对比

    Figure  3.  Comparison of coagulation and sedimentation efficiency using single factor and orthogonal experiment

    图  4  矿井水中不同粒径颗粒的个数与体积占比

    Figure  4.  Particle size distribution and counting in mine water

    图  5  不同混凝剂对不同粒径颗粒物的去除效果

    Figure  5.  Removal efficiency of suspended solids with different particle sizes by different coagulants

    图  6  混凝沉淀过程中ζ电位的变化

    Figure  6.  The ζ potential changes in coagulation experiments

    图  7  PAC/PAM去除悬浮颗粒物机理示意图

    Figure  7.  Removal mechanism of suspended solids using PAC/PAM

    表  1  正交实验设计与结果

    Table  1.   Design and results of orthogonal experiment

    样品 A/ (mg·L-1)(PAC,NPAM) B/ (r·min-1) C/min D/min Y/%
    1 50,5.0 100 0.5 5 98.0
    2 50,5.0 200 1.0 10 94.9
    3 50,5.0 300 2.0 20 98.6
    4 50,2.5 100 1.0 20 74.7
    5 50,2.5 200 2.0 5 46.0
    6 50,2.5 300 0.5 10 36.0
    7 50,1.0 100 2.0 10 16.0
    8 50,1.0 200 0.5 20 10.7
    9 50,1.0 300 1.0 5 56.7
    k1 97.51 50.53 48.22 66.89
    k2 52.22 62.89 75.42 48.98
    k3 27.78 64.09 53.87 61.64
    R 69.73 13.56 27.20 17.91
    较好水平 A1 B3 C2 D1
    下载: 导出CSV
  • [1] 王勇, 吴丽, 王雪冬. 化学混凝法处理阜新矿区矿井水试验研究[J]. 煤炭科学技术, 2017, 45(2): 203-208. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201702034.htm

    WANG Yong, WU Li, WANG Xuedong. Experimental study on chemical coagulation of mine water in Fuxin Mining Area[J]. Coal Science and Technology, 2017, 45(2): 203-208. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201702034.htm
    [2] 景长勇, 张尊举, 雷兆武, 等. 磁混凝沉淀工艺处理煤矿矿井水实验研究[J]. 工业安全与环保, 2022, 48(10): 79-82, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-GYAF202210019.htm

    JING Changyong, ZHANG Zunju, LEI Zhaowu, et al. Experimental study on treatment of coal mine water by magnetic coagulation sedimentation process[J]. Industrial Safety and Environmental Protection, 2022, 48(10): 79-82, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-GYAF202210019.htm
    [3] 陈雄山, 樊少武, 马超, 等. 混凝法去除矿井水浊度的试验研究[J]. 煤炭科学技术, 2010, 38(10): 118-120, 123.

    CHEN Xiongshan, FAN Shaowu, MA Chao, et al. Experiment study on coagulation method applied to reduce turbidity of mine water[J]. Coal Science and Technology, 2010, 38(10): 118-120, 123.
    [4] 章丽萍, 吴胜念, 宋学京, 等. 难沉降钨矿选矿废水处理研究[J]. 矿业科学学报, 2020, 5(6): 687-695. doi: 10.19606/j.cnki.jmst.2020.06.012

    ZHANG Liping, WU Shengnian, SONG Xuejing, et al. Study on treatment of difficult settling wastewater from tungsten mineral processing[J]. Journal of Mining Science and Technology, 2020, 5(6): 687-695. doi: 10.19606/j.cnki.jmst.2020.06.012
    [5] 李福勤, 贾玉丽, 孟立, 等. 高悬浮物矿井水混凝试验及应用[J]. 能源环境保护, 2016, 30(3): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-NYBH201603005.htm

    LI Fuqin, JIA Yuli, MENG Li, et al. Coagulation test and application of the high suspended solids mine water[J]. Energy Environmental Protection, 2016, 30(3): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-NYBH201603005.htm
    [6] 杨建, 王皓, 王甜甜, 等. 矿井水地下储存过程中典型污染组分去除规律: 以内蒙古敏东一矿为例[J]. 煤炭学报, 2020, 45(8): 2918-2925. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008023.htm

    YANG Jian, WANG Hao, WANG Tiantian, et al. Removal law of typical pollution components during underground storage of mine water: taking Mindong No. 1 Mine Inner Mongolia as an example[J]. Journal of China Coal Society, 2020, 45(8): 2918-2925. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008023.htm
    [7] WANG Xi, XV Hui, WANG Dongsheng. Mechanism of fluoride removal by AlCl3 and Al13: The role of aluminum speciation[J]. Journal of Hazardous Materials, 2020, 398: 122987. doi: 10.1016/j.jhazmat.2020.122987
    [8] SUN Cuizhen, QIU Jinwei, ZHANG Zhibin, et al. Coagulation behavior and floc characteristics of a novel composite poly-ferric aluminum chloride-polydimethyl diallylammonium chloride coagulant with different OH/(Fe3+ + Al3+) molar ratios[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2016, 74(7): 1636-1643. doi: 10.2166/wst.2016.290
    [9] 何绪文, 张晓航, 李福勤, 等. 煤矿矿井水资源化综合利用体系与技术创新[J]. 煤炭科学技术, 2018, 46(9): 4-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201809002.htm

    HE Xuwen, ZHANG Xiaohang, LI Fuqin, et al. Comprehensive utilization system and technical innovation of coal mine water resources[J]. Coal Science and Technology, 2018, 46(9): 4-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201809002.htm
    [10] 郑铭灏, 赵飞, 张净瑞, 等. PAC-PAM复合絮凝剂处理燃煤电厂脱硫废水的研究[J]. 现代化工, 2022, 42(5): 178-182. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202205034.htm

    ZHENG Minghao, ZHAO Fei, ZHANG Jingrui, et al. Study on PAC-PAM compound flocculant for treatment of desulfurization wastewater from coal-fired power plants[J]. Modern Chemical Industry, 2022, 42(5): 178-182. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202205034.htm
    [11] 朱阳阳, 金二锁, 宋君龙, 等. 两性聚丙烯酰胺的性质、合成与应用研究进展[J]. 化工进展, 2015, 34(3): 758-766, 789. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201503029.htm

    ZHU Yangyang, JIN Ersuo, SONG Junlong, et al. Progress in properties, synthesis and applications of amphoteric polyacrylamide[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 758-766, 789. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201503029.htm
    [12] 赵恒, 李望, 牛泽鹏, 等. 赤泥制备聚合氯化铝铁及其吸附性能研究[J]. 稀有金属与硬质合金, 2019, 47(5): 64-68, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201905014.htm

    ZHAO Heng, LI Wang, NIU Zepeng, et al. Preparation and adsorption properties of polyaluminum ferric chloride from red mud[J]. Rare Metals and Cemented Carbides, 2019, 47(5): 64-68, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201905014.htm
    [13] 王东升, 安广宇, 刘丽冰, 等. Al13的分子学及其在环境工程中的应用[J]. 环境工程学报, 2018, 12(6): 1565-1584. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201806002.htm

    WANG Dongsheng, AN Guangyu, LIU Libing, et al. Molecules of Al13 and its application in environmental engineering[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1565-1584. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201806002.htm
    [14] 刘鹏宇, 夏传, 常青, 等. 聚合硫酸铁混凝消除水中有机氯的研究[J]. 中国环境科学, 2015, 35(8): 2382-2392. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201508021.htm

    LIU Pengyu, XIA Chuan, CHANG Qing, et al. The removal of OCPs in water by coagulation with poly ferric sulfate[J]. China Environmental Science, 2015, 35(8): 2382-2392. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201508021.htm
    [15] 李庭, 李井峰, 杜文凤, 等. 国外矿井水利用现状及特点分析[J]. 煤炭工程, 2021, 53(1): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202101030.htm

    LI Ting, LI Jingfeng, DU Wenfeng, et al. Current status and characteristics of mine water reuse in foreign countries[J]. Coal Engineering, 2021, 53(1): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202101030.htm
    [16] 李福勤, 豆硕超, 高珊珊, 等. 多重混凝沉淀处理高悬浮物矿井水试验及应用[J]. 煤炭工程, 2023, 55(4): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202304019.htm

    LI Fuqin, DOU Shuochao, GAO Shanshan, et al. Experiment and application of multiple coagulation and sedimentation treatment of mine water with high suspended solids[J]. Coal Engineering, 2023, 55(4): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202304019.htm
    [17] 张海波, 陈岚岚, 杨艳平, 等. 聚丙烯酰胺的合成及应用研究进展[J]. 高分子材料科学与工程, 2016, 32(8): 177-181, 190. https://www.cnki.com.cn/Article/CJFDTOTAL-GFZC201608032.htm

    ZHANG Haibo, CHEN Lanlan, YANG Yanping, et al. Progress on synthesis and application of polyacrylamide[J]. Polymer Materials Science & Engineering, 2016, 32(8): 177-181, 190. https://www.cnki.com.cn/Article/CJFDTOTAL-GFZC201608032.htm
    [18] WANG Pin, JIAO Ruyuan, LIU Libing, et al. Optimized coagulation pathway of Al13: effect of in situ aggregation of Al13[J]. Chemosphere, 2019, 230: 76-83.
    [19] 韩瑞, 吕宪俊, 李琳, 等. 非离子絮凝剂对微细粒尾矿絮凝沉降的影响[J]. 中国矿业, 2016, 25(5): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201605021.htm

    HAN Rui, LV Xianjun, LI Lin, et al. The impact of non-ionic flocculant on the settling performance of micro-fine tailings[J]. China Mining Magazine, 2016, 25(5): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201605021.htm
    [20] 文宗. 残留消毒剂对多孔介质中病原体的影响探究[D]. 长春: 吉林大学, 2022.

    WEN Zong. Study on the effect of residual disinfectant onpathogens in porous media[D]. Changchun: Jilin University, 2022.
    [21] 羊丽萍. 预氧化强化混凝处理低温低浊高有机物水库水的效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    YANG Liping. Efficiency of preoxidation enhanced coagulation of low temperature and low turbidity reservoir water containing high organic matters[D]. Harbin: Harbin Institute of Technology, 2018.
    [22] 叶淑娟, 何占航, 洪广峰, 等. 化学消毒剂对污水处理系统中游离细菌表面zeta电位的影响[J]. 中国消毒学杂志, 2006, 23(5): 415-418. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXD200605014.htm

    YE Shujuan, HE Zhanhang, HONG Guangfeng, et al. Influence of chemical disinfectant on zeta potential of free bacterial surface in sewage treatment system[J]. Chinese Journal of Disinfection, 2006, 23(5): 415-418. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXD200605014.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  6
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-29
  • 修回日期:  2023-11-28
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回