留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛坪铅锌矿采场热环境影响因素研究

康建宏 田佳阔 吴云韬 崔数文 李晴 宋小林

康建宏, 田佳阔, 吴云韬, 崔数文, 李晴, 宋小林. 毛坪铅锌矿采场热环境影响因素研究[J]. 矿业科学学报, 2024, 9(2): 270-277. doi: 10.19606/j.cnki.jmst.2024.02.013
引用本文: 康建宏, 田佳阔, 吴云韬, 崔数文, 李晴, 宋小林. 毛坪铅锌矿采场热环境影响因素研究[J]. 矿业科学学报, 2024, 9(2): 270-277. doi: 10.19606/j.cnki.jmst.2024.02.013
KANG Jianhong, TIAN Jiakuo, WU Yuntao, CUI Shuwen, LI Qing, SONG Xiaolin. Study on influencing factors of stope thermal environment in Maoping Lead Zinc Mine[J]. Journal of Mining Science and Technology, 2024, 9(2): 270-277. doi: 10.19606/j.cnki.jmst.2024.02.013
Citation: KANG Jianhong, TIAN Jiakuo, WU Yuntao, CUI Shuwen, LI Qing, SONG Xiaolin. Study on influencing factors of stope thermal environment in Maoping Lead Zinc Mine[J]. Journal of Mining Science and Technology, 2024, 9(2): 270-277. doi: 10.19606/j.cnki.jmst.2024.02.013

毛坪铅锌矿采场热环境影响因素研究

doi: 10.19606/j.cnki.jmst.2024.02.013
基金项目: 

国家自然科学基金 51974304

国家自然科学基金 52274240

详细信息
    作者简介:

    康建宏(1981—),男,山西朔州人,博士,教授,博士生导师,主要从事矿井灾害防治、职业健康等方面的研究工作。Tel:15050844531,E-mail:jhkang@cumt.edu.cn

  • 中图分类号: TD853

Study on influencing factors of stope thermal environment in Maoping Lead Zinc Mine

  • 摘要: 矿井热害是矿井深部开采面临的重要问题。以毛坪铅锌矿为工程案例,采用现场测试与数值模拟相结合的方法,研究了不同热源对深部矿井采场热环境的影响。基于现场实测的采场地温梯度与热环境参数,构建了毛坪铅锌矿采场物理模型,采用COMSOL软件分析了较低地温条件下风流温度、人体热源、机电设备以及充填体四种热源对采场及围岩温度的影响,并通过现场温度测量数据对数值计算结果进行验证。结果表明:毛坪铅锌矿目前开采水平地温为21.60 ℃,地温梯度为1.66 ℃/hm;灰砂比是影响充填体放热的重要因素,充填体产生的热量不仅会借助风流直接传至采场,还能通过围岩传导至巷道壁面,造成采场温度升高;地温对采场温度影响较大,采场温度随着地温的增大呈线性增加;毛坪铅锌矿中各个热源对采场环境的影响程度不同,其中风流能显著提高采场温度,充填体和机电设备次之,人体热源对采场温度的影响最小。
  • 图  1  地温测试示意图

    1—测温仪器;2—黄泥;3—木塞;4—围岩;5—热电偶

    Figure  1.  Diagram of the ground temperature test

    图  2  地温与开采深度关系曲线

    Figure  2.  Relation curve between ground temperature and mining depth

    图  3  不同测试条件下充填体中心以及壁面温度

    Figure  3.  Center temperature and surface temperature of filling body under different test conditions

    图  4  采场物理模型与网格剖分

    Figure  4.  Physical modeling and grid division of stope

    图  5  风流温度实测数据与模拟结果的比较

    Figure  5.  Comparison of airflow temperature between measured data and simulation results

    图  6  不同断面上的温度分布

    Figure  6.  Temperature distribution on different sections

    图  7  采场温度场模拟结果

    Figure  7.  Simulation results of the stope temperature

    图  8  采场温度与地温关系

    Figure  8.  Relation curve between stope temperature and ground temperature

    图  9  不同热源条件下采场温度

    Figure  9.  Temperature of the stope under different heat sources

    图  10  入风温度影响下采场温度随采场长度的变化曲线

    Figure  10.  Variation of the stope temperature with stope leng under the influence of inlet air temperature

    图  11  不同热源下采场的热负荷增量

    Figure  11.  Stope heat load under different heat sources

    表  1  充填具体参数

    Table  1.   Specific filling parameters

    充填测试 充填水平/m 充填体积/m3 地温/℃ 灰砂比 机制砂比例/%
    1 +720 360.40 21.00 1∶8 30
    2 +442 271.00 25.60 1∶4 30
    下载: 导出CSV

    表  2  模拟工况条件

    Table  2.   Summary of simulated working conditions

    编号 地温 风流温度 人体热源 机电设备 充填体
    K1 21.60 26.50 37 45 37/40
    K2~K5 25,30,35,40 26.50 37 45 37/40
    K6 21.60 26.50
    K7 37
    K8 45
    K9 37/40
    K10 21.60 21.60 37 45 37/40
    K11 37
    K12 45
    K13 37/40
    注:充填体包含6个面,表中充填体数值中,前者为面向巷道面的温度值,后者为面向围岩面的温度值。
    下载: 导出CSV
  • [1] 吴爱祥, 王洪江, 尹升华, 等. 深层金属矿原位流态化开采构想[J]. 矿业科学学报, 2021, 6(3): 255-260. doi: 10.19606/j.cnki.jmst.2021.03.001

    WU Aixiang, WANG Hongjiang, YIN Shenghua, et al. Conception of in-situ fluidization mining for deep metal mines[J]. Journal of Mining Science and Technology, 2021, 6(3): 255-260. doi: 10.19606/j.cnki.jmst.2021.03.001
    [2] 王勇, 吴爱祥, 杨军, 等. 深部金属矿开采关键理论技术进展与展望[J]. 工程科学学报, 2023, 45(8): 1281-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202308005.htm

    WANG Yong, WU Aixiang, YANG Jun, et al. Progress and prospective of the mining key technology for deep metal mines[J]. Chinese Journal of Engineering, 2023, 45(8): 1281-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202308005.htm
    [3] 王诗祺, 王美. 我国煤矿深井热害成因及治理方法研究进展[J]. 现代矿业, 2018, 34(5): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201805006.htm

    WANG Shiqi, WANG Mei. Causes and study progress of governance methods of the heat hazard of deep coal mine in China[J]. Modern Mining, 2018, 34(5): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201805006.htm
    [4] 张永春. 煤矿深部开采热害治理技术研究与实践[J]. 煤炭技术, 2015, 34(10): 210-212. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201510077.htm

    ZHANG Yongchun. Research and practice on thermal damage control technology of deep mining[J]. Coal Technology, 2015, 34(10): 210-212. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201510077.htm
    [5] 孙亮, 张贺. 同忻矿8309综放面高温热害成因研究[J]. 能源技术与管理, 2020, 45(1): 135-138. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT202001052.htm

    SUN Liang, ZHANG He. Study on the cause of high temperature heat disaster of 8309 fully mechanized top coal caving face in Tongxin Mine[J]. Energy Technology and Management, 2020, 45(1): 135-138. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT202001052.htm
    [6] 柳静献, 李国栋, 常德强, 等. 矿井降温技术研究进展与展望[J]. 金属矿山, 2023(7): 18-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202307001.htm

    LIU Jingxian, LI Guodong, CHANG Deqiang, et al. Present situation and prospect of mine geothermal hazard control technology[J]. Metal Mine, 2023(7): 18-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202307001.htm
    [7] ZHANG Xiaoyan, BU Baoyun, LIU Lang, et al. Numerical simulation on cooling effect of working face under radiation cooling mode in deep well[J]. Energies, 2021, 14(15): 4428.
    [8] 熊亚选, 钱向瑶, 程磊, 等. 高温矿井制冷降温技术应用与分析[J]. 煤气与热力, 2021, 41(7): 13-19, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-MQRL202107004.htm

    XIONG Yaxuan, QIAN Xiangyao, CHENG Lei, et al. Application and analysis of refrigeration technology in high temperature mine[J]. GAS & HEAT, 2021, 41(7): 13-19, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-MQRL202107004.htm
    [9] 李文菁, 邹声华, 杨万鑫, 等. 空气隔热夹层围岩温度场数值计算及试验分析[J]. 应用力学学报, 2022, 39(2): 394-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202202025.htm

    LI Wenjing, ZOU Shenghua, YANG Wanxin, et al. Simulation and experimental analysis for temperature field of roadway surrounding rock with air layer thermal insulation[J]. Chinese Journal of Applied Mechanics, 2022, 39(2): 394-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202202025.htm
    [10] Khanal M, Adhikary D, Rao B, et al. Mechanical study of shear failure of vertical goaf drainage hole[J]. Geotechnical and Geological Engineering, 2021, 40(4): 1899-1920.
    [11] 杜翠凤, 徐喆, 唐占信, 等. 掘进巷道通风降温的数值模拟及影响因素分析[J]. 金属矿山, 2016(2): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201602033.htm

    DU Cuifeng, XV Zhe, TANG Zhanxin, et al. Numerical simulation of ventilation and cooling in excavation roadway and analysis of influencing factors[J]. Metal Mine, 2016(2): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201602033.htm
    [12] 张晓明, 黄亮, 王永军, 等. 条带潮湿巷道模型风流温湿度数值模拟研究[J]. 中国安全科学学报, 2020, 30(1): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202001004.htm

    ZHANG Xiaoming, HUANG Liang, WANG Yongjun, et al. Numerical simulation of airflow temperature and humidity for partly wet roadway model[J]. China Safety Science Journal, 2020, 30(1): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202001004.htm
    [13] 张永亮, 翟雪峰, 卢守青, 等. 金属矿长距离掘进巷道分段降温数值模拟研究[J]. 中国安全科学学报, 2020, 30(9): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202009011.htm

    ZHANG Yongliang, ZHAI Xuefeng, LU Shouqing, et al. Numerical simulation study on sectional cooling of long-distance excavation roadway in metal mine[J]. China Safety Science Journal, 2020, 30(9): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202009011.htm
    [14] WEI D Y, DU C F, XU H Y, et al. Influencing factors and correlation analysis of ventilation and cooling in deep excavation roadway[J]. Case Studies in Thermal Engineering, 2019, 14: 100483.
    [15] 李勇, 褚召祥, 姬建虎, 等. 掘进巷道风流流场和温度场数值模拟[J]. 煤炭科学技术, 2014, 42(S1): 142-145, 148. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2014S1053.htm

    LI Yong, CHU Zhaoxiang, JI Jianhu, et al. Numerical simulation of airflow field and temperature field in driving roadway[J]. Coal Science and Technology, 2014, 42(S1): 142-145, 148. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2014S1053.htm
    [16] 程力, 陈科旭, 邱树永, 等. 基于Fluent的掘进巷道热环境数值模拟及分布规律研究[J]. 工业安全与环保, 2022, 48(10): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GYAF202210001.htm

    CHENG Li, CHEN Kexü, QIU Shuyong, et al. Numerical simulation and distribution law of thermal environment of heading roadway based on Fluent[J]. Industrial Safely and Environmental Protection, 2022, 48(10): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GYAF202210001.htm
    [17] 吴章云, 曲方, 樊海兵, 等. 利用浅钻孔测定原始地温的方法[J]. 煤矿安全, 2008, 39(8): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ200808017.htm

    WU Zhangyun, QU Fang, FAN Haibing, et al. Method of measuring original ground temperature by shallow borehole[J]. Safety in Coal Mines, 2008, 39(8): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ200808017.htm
    [18] 孙勇, 王伟. 基于Fluent的掘进工作面通风热环境数值模拟[J]. 煤炭科学技术, 2012, 40(7): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201207010.htm

    SUN Yong, WANG Wei. Numerical simulation on thermal environment of ventilation for mine roadway heading face based on fluent software[J]. Coal Science and Technology, 2012, 40(7): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201207010.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  19
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-26
  • 修回日期:  2024-01-04
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回