留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胀锁型锚索双向加固窄煤柱试验研究与工程应用

王军 吕顺章 杨光 王波 谷长宛 王港

王军, 吕顺章, 杨光, 王波, 谷长宛, 王港. 胀锁型锚索双向加固窄煤柱试验研究与工程应用[J]. 矿业科学学报, 2024, 9(2): 258-269. doi: 10.19606/j.cnki.jmst.2024.02.012
引用本文: 王军, 吕顺章, 杨光, 王波, 谷长宛, 王港. 胀锁型锚索双向加固窄煤柱试验研究与工程应用[J]. 矿业科学学报, 2024, 9(2): 258-269. doi: 10.19606/j.cnki.jmst.2024.02.012
WANG Jun, LV Shunzhang, YANG Guang, WANG Bo, GU Changwan, WANG Gang. Bidirectional reinforcement of narrow pillar with inflatable lock-type anchor experimental investigation and its application[J]. Journal of Mining Science and Technology, 2024, 9(2): 258-269. doi: 10.19606/j.cnki.jmst.2024.02.012
Citation: WANG Jun, LV Shunzhang, YANG Guang, WANG Bo, GU Changwan, WANG Gang. Bidirectional reinforcement of narrow pillar with inflatable lock-type anchor experimental investigation and its application[J]. Journal of Mining Science and Technology, 2024, 9(2): 258-269. doi: 10.19606/j.cnki.jmst.2024.02.012

胀锁型锚索双向加固窄煤柱试验研究与工程应用

doi: 10.19606/j.cnki.jmst.2024.02.012
基金项目: 

国家自然科学基金 52274121

山东省自然科学基金 ZR2022ME162

河北省自然科学基金 E2022508023

详细信息
    作者简介:

    王军(1985—),男,山东宁阳人,博士,主要从事地下工程支护理论及加固技术等方面的研究工作。Tel:13583157171,E-mail:wangjun@sdjzu.edu.cn

  • 中图分类号: TD353

Bidirectional reinforcement of narrow pillar with inflatable lock-type anchor experimental investigation and its application

  • 摘要: 针对沿空掘巷窄煤柱非对称变形问题,提出了对穿锚索双向加固窄煤柱技术,设计了伸长型和胀锁型两种对穿锚索结构及工艺,开展了对穿锚索拉拔试验,试验表明两种锚索结构均满足抗拉要求,从锚索破坏形态、施工便捷性和材料经济性等方面对比分析,确定胀锁型对穿锚索为窄煤柱双向加固的首选。进一步通过相似模型试验与数值模拟研究了不同加固方式下煤柱承载变形规律和对穿锚索受力特征。结果表明:双排紧密型对穿锚索加固试件较未加固试件峰值荷载提高了96.04%,且随着锚索排数及数量的增加,窄煤柱双向加固稳定性越来越高,胀锁型对穿锚索提高了煤柱破坏前的能量储存量和临界破坏点。最后,在济宁三号煤矿12304工作面运输巷开展胀锁式对穿锚索加固窄煤柱工程试验,监测显示对穿锚索锚固力超过220 kN,锚索加固区煤柱帮鼓量降低70%,窄煤柱整体稳定性好,窄煤柱双向加固技术可行,为沿空掘巷工程提供了新技术途径。
  • 图  1  对穿锚索双向加固窄煤柱示意图

    Figure  1.  Bidirectional-reinforcement of narrow coal pillars with opposite anchor cables

    图  2  伸长型对穿锚索

    Figure  2.  Byelongation type anchor cable

    图  3  胀锁型对穿锚索

    Figure  3.  Expansion lock type crossed anchor cable

    图  4  伸长型对穿锚索加载布置

    Figure  4.  Loading of extend-type anchor cable

    图  5  伸长型锚索荷载-位移曲线

    Figure  5.  Load-displacement curve of extend-type anchor cable

    图  6  胀锁型锚索注浆过程

    Figure  6.  Grouting process of inflatable lock-type anchor cable

    图  7  胀锁型对穿锚索拉拔试验布置

    Figure  7.  Pullout test of inflatable lock-type anchor cable

    图  8  胀锁型对穿锚索破坏形态发展过程

    Figure  8.  Failing process of inflatable lock-type anchor cable

    图  9  胀锁型对穿锚索荷载-位移曲线

    Figure  9.  Load-displacement curve of inflatable lock-type anchor cable

    图  10  5组试件最终破坏形态[20]

    Figure  10.  Final failure mode of 5 groups of specimens

    图  11  对穿锚索荷载-位移曲线[20]

    Figure  11.  Load-displacement curves of anchor cables

    图  12  对穿锚索加固方案平面图

    Figure  12.  Reinforcement schemes

    图  13  窄煤柱模型

    Figure  13.  Calculation model of narrow coal pillar

    图  14  对穿锚索加固窄煤柱模拟结果

    Figure  14.  Simulation results of narrow coal pillar reinforced by anchor cable

    图  15  对穿锚索轴力分布曲线

    Figure  15.  Axial force distribution of anchor cable

    图  16  12304工作面布置示意图

    Figure  16.  Layout of 123 lower 04 working face

    图  17  巷道围岩变形破坏

    Figure  17.  Deformation and failure of roadway surrounding rock

    图  18  煤柱窥视孔布置剖面图

    Figure  18.  Layout of coal pillar peephole

    图  19  采空区钻孔窥视图

    Figure  19.  Borehole peeping of goaf

    图  20  对穿锚索加固窄煤柱实施过程

    Figure  20.  Implementation of reinforcing narrow coal pillar with inflatable lock-type anchor cables

    图  21  围岩表面位移随采面推进变形曲线

    Figure  21.  Surrounding rock surface displacement curves with the advance of mining face

    图  22  对穿锚索锚固力随采面推进变化曲线

    Figure  22.  Variation of the anchoring force of anchor cables with the advance of the mining face

    图  23  对穿锚索加固窄煤柱应用效果

    Figure  23.  Application of reinforcing narrow coal pillar with inflatable lock-type anchor cables

    表  1  锚索规格参数

    Table  1.   Anchor cable specifications

    直径/mm 截面积/mm2 抗拉强度/MPa 质量/(kg·m-1) 最低破断荷载/kN
    21.6 285 1 770 2.24 504
    下载: 导出CSV

    表  2  对穿锚索结构分析比选

    Table  2.   Comparison of anchor cable structures

    类别 最终破坏形态 施工便捷性对比 材料经济性对比
    伸长型 高强套管自身强度、挤压锚及固定头螺纹综合作用力大于锚索破断力,最大抗拉力即锚索破断力 在上采面施工后,下采面回采巷道不易找到锚索后置段;需完成上采面钻孔和新掘回采巷道侧锚索伸长2次施工 材料成本较高,施工成本高,可实现性较差
    胀锁型 在囊袋包裹力、胀锁体自身强度及其对锚索的握裹力综合作用下,胀锁型对穿锚索最大锚固力可达430 kN 沿新掘巷道侧煤柱施工,不存在寻找的问题;仅需在巷道侧进行1次施工 材料成本相当,施工成本低,可实现性较强
    下载: 导出CSV

    表  3  对穿锚索布置方案

    Table  3.   Layout plan of inflatable lock-type anchor cables

    编号 布置方式 锚索数量/根 间距/mm 排距/mm
    A1 未加固
    A2 单排大间距 3 100
    A3 单排紧密型 6 50
    A4 双排大间距 6 100 60
    A5 双排紧密型 12 50 60
    下载: 导出CSV

    表  4  试件各阶段变形量[20]

    Table  4.   Deformation of the specimens at each stage

    试件编号 压密阶段 裂隙发育阶段 破坏阶段 累计变形
    轴向位移/mm 水平位移/mm 临界荷载/kN 轴向位移/mm 水平位移/mm 临界荷载/kN 轴向位移/mm 水平位移/mm 临界荷载/kN 轴向位移/mm 水平位移/mm
    A1 2.02 2.27 10 4.20 4.68 80 4.34 4.88 87.89 10.56 11.83
    A2 2.04 2.20 14 2.78 3.19 88 4.40 5.12 103.72 9.22 10.51
    A3 1.16 1.35 15 3.32 4.04 110 3.17 3.21 133.55 7.65 8.60
    A4 0.95 1.09 18 4.11 4.85 100 2.01 2.02 112.93 7.07 7.96
    A5 0.40 0.60 15 3.51 3.87 149 1.77 1.89 172.30 5.68 6.36
    下载: 导出CSV

    表  5  煤体力学参数

    Table  5.   The mechanical parameters of coal

    弹性模量E/GPa 泊松比ν 容重γ/(kN·m-3) 黏聚力c/MPa 内摩擦角φ/(°)
    1.64 0.24 14.5 1.5 30
    下载: 导出CSV

    表  6  材料参数

    Table  6.   Parameters of materials

    材料名称 弹性模量E/GPa 泊松比ν 容重γ/(kN·m-3)
    对穿锚索 210 0.24 78.5
    锚杆 210 0.20 78.5
    下载: 导出CSV
  • [1] 柏建彪. 沿空掘巷围岩控制[M]. 徐州: 中国矿业大学出版社, 2006: 13-62.

    BAI Jianbiao. Surrounding rock control of roadway excavation[M]. Xuzhou: China University of Mining and Technology Press, 2006: 13-62.
    [2] 康红普, 张晓, 王东攀, 等. 无煤柱开采围岩控制技术及应用[J]. 煤炭学报, 2022, 47(1): 16-44. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202201002.htm

    KANG Hongpu, ZHANG Xiao, WANG Dongpan, et al. Strata control technology and applications of non-pillar coal mining[J]. Journal of China Coal Society, 2022, 47(1): 16-44. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202201002.htm
    [3] 张广超, 何富连. 大断面综放沿空巷道煤柱合理宽度与围岩控制[J]. 岩土力学, 2016, 37(6): 1721-1728, 1736. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606024.htm

    ZHANG Guangchao, HE Fulian. Pillar width determination and surrounding rocks control of gob-side entry with large cross-section and fully-mechanized mining[J]. Rock and Soil Mechanics, 2016, 37(6): 1721-1728, 1736. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606024.htm
    [4] 程利兴, 康红普, 姜鹏飞, 等. 深井沿空掘巷围岩变形破坏特征及控制技术研究[J]. 采矿与安全工程学报, 2021, 38(2): 227-236. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202102002.htm

    CHENG Lixing, KANG Hongpu, JIANG Pengfei, et al. Deformation and failure characteristics and control technology of surrounding rocks in deeply gob-side entry driving[J]. Journal of Mining & Safety Engineering, 2021, 38(2): 227-236. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202102002.htm
    [5] 李学华, 鞠明和, 贾尚昆, 等. 沿空掘巷窄煤柱稳定性影响因素及工程应用研究[J]. 采矿与安全工程学报, 2016, 33(5): 761-769. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201605001.htm

    LI Xuehua, JV Minghe, JIA Shangkun, et al. Study of influential factors on the stability of narrow coal pillar in gob-side entry driving and its engineering application[J]. Journal of Mining & Safety Engineering, 2016, 33(5): 761-769. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201605001.htm
    [6] 郭金刚, 王伟光, 岳帅帅, 等. 特厚煤层综放沿空掘巷围岩控制机理及其应用[J]. 煤炭学报, 2017, 42(4): 825-832. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201704003.htm

    GUO Jingang, WANG Weiguang, YUE Shuaishuai, et al. Surrounding rock control mechanism and its application of gob-side driving entry in extra thick coal seam[J]. Journal of China Coal Society, 2017, 42(4): 825-832. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201704003.htm
    [7] 王志强, 郭磊, 苏泽华, 等. 倾斜中厚煤层错层位外错式巷道布置及相邻巷道联合支护技术[J]. 煤炭学报, 2020, 45(2): 542-555. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002004.htm

    WANG Zhiqiang, GUO Lei, SU Zehua, et al. Layout and combined support technology of alternate exterior stagger arrang-ement roadway and adjacent roadways in inclined and medium-thick coal seam[J]. Journal of China Coal Society, 2020, 45(2): 542-555. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002004.htm
    [8] 陈正拜, 李永亮, 杨仁树, 等. 窄煤柱巷道非均匀变形机理及支护技术[J]. 煤炭学报, 2018, 43(7): 1847-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807007.htm

    CHEN Zhengbai, LI Yongliang, YANG Renshu, et al. Non-uniform deformation mechanism and support technology of narrow coal pillar roadway[J]. Journal of China Coal Society, 2018, 43(7): 1847-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807007.htm
    [9] 于洋, 柏建彪, 王襄禹, 等. 残留煤柱工作面巷道布置及卸压控制研究[J]. 煤炭学报, 2020, 45(S1): 49-59. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S1006.htm

    YU Yang, BAI Jianbiao, WANG Xiangyu, et al. Research on layout and pressure relief control of roadway with residual coal pillar mining face[J]. Journal of China Coal Society, 2020, 45(S1): 49-59. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S1006.htm
    [10] 张百胜, 王朋飞, 崔守清, 等. 大采高小煤柱沿空掘巷切顶卸压围岩控制技术[J]. 煤炭学报, 2021, 46(7): 2254-2267. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202107020.htm

    ZHANG Baisheng, WANG Pengfei, CUI Shouqing, et al. Mechanism and surrounding rock control of roadway driving along gob in shallow-buried, large mining height and small coal Pillars by roof cutting[J]. Journal of China Coal Society, 2021, 46(7): 2254-2267. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202107020.htm
    [11] 王琦, 张朋, 蒋振华, 等. 深部高强锚注切顶自成巷方法与验证[J]. 煤炭学报, 2021, 46(2): 382-397. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202102006.htm

    WANG Qi, ZHANG Peng, JIANG Zhenhua, et al. Automatic roadway formation method by roof cutting with high strength bolt-grouting in deep coal mine and its validation[J]. Journal of China Coal Society, 2021, 46(2): 382-397. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202102006.htm
    [12] 何满潮. 深部建井力学研究进展[J]. 煤炭学报, 2021, 46(3): 726-746. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103004.htm

    He Manchao. Research progress of deep shaft construction mechanics[J]. Journal of China Coal Society, 2021, 46(3): 726-746. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103004.htm
    [13] 张洪伟, 万志军, 张源, 等. 工作面顺序接续下综放沿空掘巷窄煤柱稳定性控制[J]. 煤炭学报, 2021, 46(4): 1211-1219. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202104018.htm

    ZHANG Hongwei, WAN Zhijun, ZHANG Yuan, et al. Stability control of narrow coal Pillars in the fully-mechanized gob side entry during sequenced top coal caving mining[J]. Journal of China Coal Society, 2021, 46(4): 1211-1219. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202104018.htm
    [14] 吴拥政, 陈金宇, 焦建康, 等. 冲击载荷作用下锚固围岩损伤破坏机制[J]. 煤炭学报, 2018, 43(9): 2389-2397. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809003.htm

    WU Yongzheng, CHEN Jinyu, JIAO Jiankang, et al. Damage and failure mechanism of anchored surrounding rock with impact loading[J]. Journal of China Coal Society, 2018, 43(9): 2389-2397. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809003.htm
    [15] 王炯, 张正俊, 朱天赐, 等. 恒阻大变形锚索支护巷道变形机制模型试验研究[J]. 岩石力学与工程学报, 2020, 39(5): 927-937. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202005007.htm

    WANG Jiong, ZHANG Zhengjun, ZHU Tianci, et al. Model test study on deformation mechanisms of roadways supported by constant resistance and large deformation anchor cables[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(5): 927-937. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202005007.htm
    [16] 谭云亮, 于凤海, 宁建国, 等. 沿空巷旁支护适应性原理与支护方法[J]. 煤炭学报, 2016, 41(2): 376-382. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201602014.htm

    TAN Yunliang, YU Fenghai, NING Jianguo, et al. Adaptability theory of roadside support in gob-side entry retaining and its supporting design[J]. Journal of China Coal Society, 2016, 41(2): 376-382. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201602014.htm
    [17] 赵光明, 许文松, 孟祥瑞, 等. 扰动诱发高应力岩体开挖卸荷围岩失稳机制[J]. 煤炭学报, 2020, 45(3): 936-948. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003008.htm

    ZHAO Guangming, XV Wensong, MENG Xiangrui, et al. Instability mechanism of high stress rock mass under excavation and unloading induced by disturbance[J]. Journal of China Coal Society, 2020, 45(3): 936-948. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003008.htm
    [18] JIANG B Y, GU S T, WANG LG, et al. Strainburst process of marble in tunnel-excavation-induced stress path considering intermediate principal stress[J]. Journal of Central South University, 2019, 26(4): 984-999.
    [19] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 预应力混凝土用钢绞线: GB/T 5224—2014[S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspe-ction and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Steel strand for prestressed concrete: GB/T 5224—2014[S]. Beijing: Standards Press of China, 2015.
    [20] 王波, 谷长宛, 王军, 等. 对穿锚索加固作用下沿空掘巷留设煤柱承压性能试验研究[J]. 中国矿业大学学报, 2020, 49(2): 262-270. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202002007.htm

    WANG Bo, GU Changwan, WANG Jun, et al. Bear-ing capacity experimental study of coal pillar in the gob-side entry driving under the reinforcement of inflatable lock-type anchor[J]. Journal of China University of Mining & Technology, 2020, 49(2): 262-270. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202002007.htm
  • 加载中
图(23) / 表(6)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  7
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 修回日期:  2024-01-03
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回