留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风积沙充填开采应用现状及材料性能研究

王树帅 岳中文 康一强 罗磊

王树帅, 岳中文, 康一强, 罗磊. 风积沙充填开采应用现状及材料性能研究[J]. 矿业科学学报, 2024, 9(2): 217-232. doi: 10.19606/j.cnki.jmst.2024.02.009
引用本文: 王树帅, 岳中文, 康一强, 罗磊. 风积沙充填开采应用现状及材料性能研究[J]. 矿业科学学报, 2024, 9(2): 217-232. doi: 10.19606/j.cnki.jmst.2024.02.009
WANG Shushuai, YUE Zhongwen, KANG Yiqiang, LUO Lei. Research on the application status and material properties of aeolian sand filling mining[J]. Journal of Mining Science and Technology, 2024, 9(2): 217-232. doi: 10.19606/j.cnki.jmst.2024.02.009
Citation: WANG Shushuai, YUE Zhongwen, KANG Yiqiang, LUO Lei. Research on the application status and material properties of aeolian sand filling mining[J]. Journal of Mining Science and Technology, 2024, 9(2): 217-232. doi: 10.19606/j.cnki.jmst.2024.02.009

风积沙充填开采应用现状及材料性能研究

doi: 10.19606/j.cnki.jmst.2024.02.009
基金项目: 

国家自然科学基金 52174095

博士研究生拔尖创新人才培育基金 BBJ2023054

详细信息
    作者简介:

    王树帅(1993—),男,内蒙古赤峰人,博士研究生,主要从事煤矿绿色充填开采与充填材料性能方面的研究工作。Tel:18401624262,E-mail:wsstree@163.com

  • 中图分类号: TD823

Research on the application status and material properties of aeolian sand filling mining

  • 摘要: 风积沙充填开采可实现就地取材、变废为宝,实现煤矿开采与风积沙治理的协同处理。目前,风积沙充填主要应用于公路下伏采空区充填、煤矿充填开采及金属矿充填开采;在充填工艺方面,开发了采空区注浆投沙、固体充填开采、高水充填开采以及胶结充填开采等;在充填技术方面,采用了长壁式充填开采、条带式充填开采和巷式充填开采等。关于风积沙胶结材料性能研究集中于料浆流动性与充填体强度方面。通过分析不同配比与养护时间下风积沙胶结料浆的流变特性,以及采用聚丙烯纤维对风积沙充填体进行韧性改良,发现风积沙胶结料浆流变参数随养护时间而增加,纤维的加入显著改善了风积沙充填体的脆性特征。
  • 图  1  风积沙基础物化性能

    Figure  1.  Basic physicochemical properties of aeolian sand

    图  2  文献发表年份及篇数

    Figure  2.  Publication year and number of references

    图  3  注浆投沙工艺和管口设置

    Figure  3.  Grouting and sand injection process and pipeline settings

    图  4  高水充填与胶结充填系统与工艺

    Figure  4.  High water and cementing backfilling system and technology

    图  5  连采连充充填开采巷道布置与开采模式

    Figure  5.  Layout and mining mode of continuous mining and continuous backfilling

    图  6  连采连充胶结充填开采系统与装备

    Figure  6.  System and equipment of continuous mining and continuous backfilling

    图  7  充填体压缩特性曲线

    Figure  7.  Compression characteristic curve of backfill

    图  8  料浆管道输送示意图

    Figure  8.  Schematic diagram of Slurry pipeline transport

    图  9  试验内容与流程

    Figure  9.  Test content and process

    图  10  流变参数随各因素的变化规律

    Figure  10.  The variation of rheological parameters with each factor

    图  11  流变参数随时间的变化规律

    Figure  11.  The variation of rheological parameters with time

    图  12  纤维增韧充填体应力-应变曲线

    Figure  12.  Stress-strain curve of fiber-toughened backfill

    图  13  充填体强度与应变

    Figure  13.  The strength and strain of backfill

    图  14  不同纤维掺量下充填体破坏形式

    Figure  14.  Failure form of backfill under different fiber dosage

    表  1  风积沙煤矿充填应用现状

    Table  1.   Application status of aeolian sand filling in coal mines

    充填工艺 工程应用 文献与发表年份 研究单位 主要研究内容
    固体充填开采 小纪汗煤矿 [17]/2017 中国矿业大学 固体材料侧限压缩性能
    泰元煤矿 [18]/2019
    榆林矿区 [16]/2014、[19]/2019
    常兴煤矿 [20]/2019
    济三矿(山东) [21]/2017
    水帘洞煤矿 [22]/2021 水帘洞煤炭有限公司
    新疆某矿 [23]/2022 新疆大学
    高水充填开采 榆阳煤矿 [25]/2014 天地科技股份有限公司 充填支架设计与应用
    [26]/2017 榆林职业技术学院 材料性能、工艺设计
    [27]/2018 西安科技大学 材料性能
    陕北矿区 [24]/2013 青岛理工大学 系统研制与设计
    青磁窑煤矿 [28]/2020 青磁窑煤矿 工艺设计
    胶结充填开采 榆卜界矿 [29]/2009 煤科总院开采设计研究院 材料性能、工艺设计工程应用
    榆阳煤矿 [32]/2014、[33]/2016、[38]/2021 天地科技股份有限公司
    [30]/2015 陕西中能煤田有限公司
    [31]/2015 西安科技大学
    [34]/2017、[37]/2020 煤炭科学研究总院
    [35-36]/2016 中煤科工集团西安研究院 材料性能
    常兴煤矿 [39]/2016 中国矿业大学 工艺介绍、效果监测
    [40]/2021 西安科技大学 材料性能
    上河煤矿 [41-42]/2021、[43]/2018 材料性能、工艺设计
    沙沟岔煤矿 [44]/2019、[45]/2020、[46]/2022 材料性能
    永乐煤矿 [47-48]/2021
    小保当矿区 [53]/2021、[54]/2022
    张家峁煤矿 [55]/2017
    陕北矿区 [56]/2012、[58]/2021、[59-60]/2022
    二石磕煤矿 [49]/2018、[50]/2019 中国矿业大学
    金牛煤矿 [51]/2019、[52]/2021
    山东岐山煤矿 [61]/2018
    山东长城三矿 [62]/2020 山东能源新矿集团长城三矿 材料性能、效果分析
    下载: 导出CSV

    表  2  流变试验配比方案

    Table  2.   Proportioning scheme of rheological test

    试验组号 水泥质量分数A/% 胶沙比B 质量浓度C/%
    T1(8-0.6-82) 8 0.6 82
    T2(12-0.6-82) 12 0.6 82
    T3(10-0.4-82) 10 0.4 82
    T4(10-0.8-82) 10 0.8 82
    T5(10-0.6-80) 10 0.6 80
    T6(10-0.6-84) 10 0.6 84
    T7(10-0.6-82) 10 0.6 82
    下载: 导出CSV

    表  3  流变参数与养护时间拟合结果

    Table  3.   Fitting results of rheological parameters and curing Time

    组别 流变参数与时间t的拟合结果 拟合度R2
    T1 τ0= 66.23+0.45 t+1.27×10-3t2 0.999
    T2 τ0= 90.86+0.85 t+2.37×10-3t2 0.999
    T3 τ0= 55.32+0.49 t+1.11×10-3t2 0.985
    T4 τ0= 116.48+0.65 t+3.99×10-3t2 0.999
    T5 τ0= 36.65+0.22 t+8.36×10-4t2 0.999
    T6 τ0= 189.7+0.66 t+5.78×10-3t2 0.996
    T7 τ0= 82.18+0.53 t+1.7×10-3t2 0.999
    T1 η = 0.36+0.002 t+1.41×10-5t2 0.967
    T2 η = 0.65+0.006 t+1.25×10-5t2 0.995
    T3 η = 0.44+0.004 t 0.999
    T4 η = 0.8+0.004 t+2.66×10-5t2 0.993
    T5 η = 0.38+0.002 t+1.25×10-5t2 0.913
    T6 η = 1.18+0.005 t+3.13×10-5t2 0.993
    T7 η = 0.56+0.004 t 0.972
    下载: 导出CSV
  • [1] 王双明, 申艳军, 孙强, 等. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J]. 采矿与岩层控制工程学报, 2020, 2(4): 5-19. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202004001.htm

    WANG Shuangming, SHEN Yanjun, SUN Qiang, et al. Scientific issues of coal detraction mining geological assurance and their technology expectations in ecologically fragile mining areas of Western China[J]. Journal of Mining and Strata Control Engineering, 2020, 2(4): 5-19. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202004001.htm
    [2] 袁永, 朱成, 王文苗, 等. 深部煤矿井下采煤-充填空间优化布局方法[J]. 中国矿业大学学报, 2023, 52(2): 286-299. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202302007.htm

    YUAN Yong, ZHU Cheng, WANG Wenmiao, et al. Optimal layout methods of underground mining-backfilling space in deep mine[J]. Journal of China University of Mining & Technology, 2023, 52(2): 286-299. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202302007.htm
    [3] 钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018, 43(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801002.htm

    QIAN Minggao, XU Jialin, WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society, 2018, 43(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801002.htm
    [4] 胡炳南, 郭文砚. 我国采煤沉陷区现状、综合治理模式及治理建议[J]. 煤矿开采, 2018, 23(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201802001.htm

    HU Bingnan, GUO Wenyan. Mining subsidence area status, syntheses governance model and governance recommendation[J]. Coal Mining Technology, 2018, 23(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201802001.htm
    [5] 王树帅, 李永亮, 李清, 等. 基于泰波理论的矸石级配系数对充填材料性能的影响[J]. 采矿与安全工程学报, 2022, 39(4): 683-692. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204005.htm

    WANG Shushuai, LI Yongliang, LI Qing, et al. Influence of gangue gradation coefficient on the performance of filling material based on talbol theory[J]. Journal of Mining & Safety Engineering, 2022, 39(4): 683-692. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204005.htm
    [6] 李永亮, 路彬, 杨仁树, 等. 煤矿连采连充式胶结充填采煤技术与典型工程案例[J]. 煤炭学报, 2022, 47(3): 1055-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202203004.htm

    LI Yongliang, LU Bin, YANG Renshu, et al. Cemented backfilling mining technology with continuous mining and continuous backfilling method for underground coal mine and typical engineering cases[J]. Journal of China Coal Society, 2022, 47(3): 1055-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202203004.htm
    [7] 刘建功, 李新旺, 何团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报, 2020, 45(1): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001015.htm

    LIU Jiangong, LI Xinwang, HE Tuan. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society, 2020, 45(1): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001015.htm
    [8] 张吉雄, 鞠杨, 张强, 等. 矿山生态环境低损害开采体系与方法[J]. 采矿与岩层控制工程学报, 2019, 1(2): 56-68. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902005.htm

    ZHANG Jixiong, JÜ Yang, ZHANG Qiang, et al. Low ecological environment damage technology and method in coal mines[J]. Journal of Mining and Strata Control Engineering, 2019, 1(2): 56-68. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902005.htm
    [9] 古文哲, 杨宝贵, 朱磊, 等. 矸石浆体充填空间特征研究与工程实践[J]. 矿业科学学报, 2023, 8(3): 409-418. doi: 10.19606/j.cnki.jmst.2023.03.014

    GU Wenzhe, YANG Baogui, ZHU Lei, et al. Study on spatial characteristics of gangue slurry filling mining and engineering practice[J]. Journal of Mining Science and Technology, 2023, 8(3): 409-418. doi: 10.19606/j.cnki.jmst.2023.03.014
    [10] 周跃进. 难采资源综合机械化固体充填开采适宜性评价研究[D]. 徐州: 中国矿业大学, 2012.

    ZHOU Yuejin. Study on suitability evaluation of full-mechanized solid back-filling mining technology for difficult-to-mine resource[D]. Xuzhou: China University of Mining and Technology, 2012.
    [11] WANG S S, LI Y L, YANG R S, et al. Rheological behavior with time dependence and fresh slurry liquidity of cemented aeolian sand backfill based on response surface method[J]. Construction and Building Materials, 2023, 371: 130768. doi: 10.1016/j.conbuildmat.2023.130768
    [12] 肖均, 向龙, 陈寿根. 高速公路下伏采空区注浆投沙治理工艺[J]. 四川建筑, 2010, 30(5): 170-172. https://www.cnki.com.cn/Article/CJFDTOTAL-SCJI201005068.htm

    XIAO Jun, XIANG Long, CHEN Shougen. Treatment technology of grouting and sand throwing in goaf under expressway[J]. Sichuan Architecture, 2010, 30(5): 170-172. https://www.cnki.com.cn/Article/CJFDTOTAL-SCJI201005068.htm
    [13] 向龙. 高速公路下伏采空区风积沙填充技术研究[D]. 成都: 西南交通大学, 2010.

    XIANG Long. A study on treatment technology of goafs under expressways using aeolian sand[D]. Chengdu: Southwest Jiaotong University, 2010.
    [14] 张恒, 陈寿根, 向龙. 采用风积沙治理高速公路下伏采空区技术研究[J]. 路基工程, 2011(6): 115-118. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201106034.htm

    ZHANG Heng, CHEN Shougen, XIANG Long. Technology research for the treatment of mined-out area under highway using aeolian sand[J]. Subgrade Engineering, 2011(6): 115-118. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201106034.htm
    [15] 陈益民. 风积沙在采空区注浆充填治理中的技术研究[J]. 现代矿业, 2022, 38(3): 178-181. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB202203046.htm

    CHEN Yimin. Technical research on aeolian sand in mined-out area grouting and filling control[J]. Modern Mining, 2022, 38(3): 178-181. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB202203046.htm
    [16] 吴晓刚. 固体充填材料力学特性研究及应用[D]. 徐州: 中国矿业大学, 2014.

    WU Xiaogang. Mechanical properties of solid filling materials research and application[D]. Xuzhou: China University of Mining and Technology, 2014.
    [17] SUN Q, ZHANG J X, ZHANG Q, et al. Analysis and prevention of geo-environmental hazards with high-intensive coal mining: a case study in China's western eco-environment frangible area[J]. Energies, 2017, 10(6): 786. doi: 10.3390/en10060786
    [18] HUANG P, SPEARING S, JU F, et al. Control effects of five common solid waste backfilling materials on in situ strata of gob[J]. Energies, 2019, 12(1): 154. doi: 10.3390/en12010154
    [19] 徐迁迁. 散体充填材料承压渗流特性规律研究[D]. 徐州: 中国矿业大学, 2019.

    XU Qianqian. Seepage characteristics of pressurized loose backfilling materials[D]. Xuzhou: China University of Mining and Technology, 2019.
    [20] 兰立信, 李猛, 张强, 等. 典型矿区固体混合充填材料力学特性试验研究[J]. 采矿与安全工程学报, 2019, 36(3): 593-600, 608. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201903023.htm

    LAN Lixin, LI Meng, ZHANG Qiang, et al. Experimental study on mechanical properties of solid mixed filling materials in typical mining areas[J]. Journal of Mining & Safety Engineering, 2019, 36(3): 593-600, 608. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201903023.htm
    [21] 李猛, 张吉雄, 黄艳利, 等. 基于固体充填材料压实特性的充实率设计研究[J]. 采矿与安全工程学报, 2017, 34(6): 1110-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201706011.htm

    LI Meng, ZHANG Jixiong, HUANG Yanli, et al. Research on compression ratio design based on compaction properties of solid backfill materials[J]. Journal of Mining & Safety Engineering, 2017, 34(6): 1110-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201706011.htm
    [22] 李乃录, 易巧梅, 张恒, 等. 风积沙与黄土混合固体充填材料物理力学特性研究[J]. 煤炭技术, 2021, 40(5): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202105006.htm

    LI Nailu, YI Qiaomei, ZHANG Heng, et al. Research on physical mechanical characterization of aeolian sand and loess solid backfilling material[J]. Coal Technology, 2021, 40(5): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202105006.htm
    [23] ZHANG Z Y, WANG W, ZHAO B. Numerical study on the vibratory compaction mechanism of the sand-gabion backfills in underground coal mines[J]. Minerals, 2022, 12(11): 1428. doi: 10.3390/min12111428
    [24] 孙亦霖. 风积沙高水膨胀料浆制备控制系统的研制[D]. 青岛: 青岛理工大学, 2013.

    SUN Yilin. Development of the preparation control system of the aeolian sand and high water expansion slurry[D]. Qingdao: Qingdao Tehcnology University, 2013.
    [25] 程骏. 高水柔模充填液压支架的应用[J]. 煤矿机械, 2014, 35(11): 217-219. https://www.cnki.com.cn/Article/CJFDTOTAL-MKJX201411096.htm

    CHENG Jun. Application of high-water flexible formwork powered support for stowing[J]. Coal Mine Machinery, 2014, 35(11): 217-219. https://www.cnki.com.cn/Article/CJFDTOTAL-MKJX201411096.htm
    [26] 陈拓其, 党西峰. 榆阳煤矿综采充填柔模密闭墙设计与施工[J]. 煤矿安全, 2018, 49(9): 183-186. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201809045.htm

    CHEN Tuoqi, DANG Xifeng. Design and construction of fire dam with soft model in Yuyang coal mine[J]. Safety in Coal Mines, 2018, 49(9): 183-186. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201809045.htm
    [27] 钟凯. 榆阳煤矿充填开采工艺及参数研究[D]. 西安: 西安科技大学, 2018.

    ZHONG Kai. Study on mining with filling technology and parameters of Yuyang coal mine[D]. Xi'an: Xi'an University of Science and Technology, 2018.
    [28] 孙亚卿. 煤矿回采工艺的优化[J]. 当代化工研究, 2020(20): 130-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJTY202020060.htm

    SUN Yaqing. Optimization of coal mining technology[J]. Modern Chemical Research, 2020(20): 130-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJTY202020060.htm
    [29] 崔锋, 张华兴. 风积砂井下充填可行性分析[J]. 煤矿开采, 2009, 14(3): 42-43, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC200903017.htm

    CUI Feng, ZHANG Huaxing. Feasibility analysis of aeolian-sand for underground stowing[J]. Coal Mining Technology, 2009, 14(3): 42-43, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC200903017.htm
    [30] 吕文宏, 孙凯华, 郑天斌. 风积砂在膏体充填材料中的添加研究及应用[J]. 煤炭技术, 2015, 34(10): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201510004.htm

    LÜ Wenhong, SUN Kaihua, ZHENG Tianbin. Research and application on aeolian sand paste stowing material for mine[J]. Coal Technology, 2015, 34(10): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201510004.htm
    [31] 程浩. 柔模风积砂流体充填材料及输送研究[D]. 西安: 西安科技大学, 2015.

    CHENG Hao. Research on flexible formwork wind-blown sand fluid filling material and transportation[D]. Xi'an: Xi'an University of Science and Technology, 2015.
    [32] 孙凯华. 风积砂似膏体煤矿充填材料特性试验研究[J]. 煤炭技术, 2014, 33(5): 262-265. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201405099.htm

    SUN Kaihua. Experimental research on aeolian sand paste-like stowing material for mine[J]. Coal Technology, 2014, 33(5): 262-265. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201405099.htm
    [33] 刘鹏亮, 孙凯华. 风积砂似膏体充填站优化设计与实践[J]. 煤矿开采, 2016, 21(6): 65-67, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201606022.htm

    LIU Pengliang, SUN Kaihua. Optimal design and practical of aeolian sand paste-like backfill station[J]. Coal Mining Technology, 2016, 21(6): 65-67, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201606022.htm
    [34] 刘鹏亮, 张华兴, 崔锋, 等. 风积砂似膏体机械化充填保水采煤技术与实践[J]. 煤炭学报, 2017, 42(1): 118-126. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701016.htm

    LIU Pengliang, ZHANG Huaxing, CUI Feng, et al. Technology and practice of mechanized backfill mining for water protection with aeolian sand paste-like[J]. Journal of China Coal Society, 2017, 42(1): 118-126. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701016.htm
    [35] 王晓东. 风积沙质胶结充填材料性能对水固比响应分析[J]. 煤田地质与勘探, 2016, 44(6): 106-112. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201606020.htm

    WANG Xiaodong. Influence of the perfomance of eolian arenaceous cemented filling materials on response of water-solid ratio[J]. Coal Geology & Exploration, 2016, 44(6): 106-112. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201606020.htm
    [36] 王晓东. 风积砂质高浓度胶凝充填材料性能与粉煤灰掺量关系分析[J]. 工程地质学报, 2016, 24(1): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201601012.htm

    WANG Xiaodong. Relationship between engineering performance and mix proportion of fly ash for cemented and high concentration backfill material with wind-blown sand as aggregate[J]. Journal of Engineering Geology, 2016, 24(1): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201601012.htm
    [37] 贾林刚. 风积砂膏体充填开采覆岩移动与地表沉陷机理研究及应用[D]. 北京: 煤炭科学研究总院, 2020.

    JIA Lingang. Research and application on overlying strata movement and surface subsidence mechanism of paste filling mining with aeolian sand[D]. Beijing: China Coal Research Institute, 2020.
    [38] 孙凯华. 高浓度充填料浆大倍线管道自流输送技术及应用[J]. 矿业安全与环保, 2021, 48(6): 113-117, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202106021.htm

    SUN Kaihua. Gravity convey technology and application by pipeline with high density backfill slurry and great times line[J]. Mining Safety & Environmental Protection, 2021, 48(6): 113-117, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202106021.htm
    [39] ZHANG J X, SUN Q, ZHOU N, et al. Research and application of roadway backfill coal mining technology in western coal mining area[J]. Arabian Journal of Geosciences, 2016, 9(10): 558. doi: 10.1007/s12517-016-2585-5
    [40] SHAO X P, SUN J P, XIN J, et al. Experimental study on mechanical properties, hydration kinetics, and hydration product characteristics of aeolian sand paste-like materials[J]. Construction and Building Materials, 2021, 303: 124601. doi: 10.1016/j.conbuildmat.2021.124601
    [41] SHAO X P, SUN W L, LI X, et al. Experimental study on the mechanical properties and failure characteristics of layered aeolian sand paste-like backfill-a case study from Shanghe coal mine[J]. Minerals, 2021, 11(6): 577. doi: 10.3390/min11060577
    [42] 邵小平, 陶叶青, 刘二帅, 等. 陕北浅埋煤层似膏体充填条带开采参数研究及应用[J]. 煤炭科学技术, 2021, 49(7): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202107009.htm

    SHAO Xiaoping, TAO Yeqing, LIU Ershuai, et al. Study and application of paste-like filling mining parameters of shallow buried coal seam in Northern Shaanxi[J]. Coal Science and Technology, 2021, 49(7): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202107009.htm
    [43] 张慧峰. 风积沙似膏体充填材料试验研究[D]. 西安: 西安科技大学, 2018.

    ZHANG Huifeng. Experimental study on aeolian sand paste filling material[D]. Xi'an: Xi'an University of Science and Technology, 2018.
    [44] 王毅. 煤矿采空区膏体充填材料物理力学试验研究[D]. 西安: 西安科技大学, 2019.

    WANG Yi. Experimental study on physical and mechanical properties of paste filling materials in coal mine goaf[D]. Xi'an: Xi'an University of Science and Technology, 2019.
    [45] 曹晓凡, 唐亦川, 邓念东, 等. 基于重复正交试验的风积砂膏体充填材料配比[J]. 煤矿安全, 2020, 51(9): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202009013.htm

    CAO Xiaofan, TANG Yichuan, DENG Niandong, et al. Aeolian sand paste filling material ratio based on repeated orthogonal test[J]. Safety in Coal Mines, 2020, 51(9): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202009013.htm
    [46] 李鹏飞, 曹晓凡, 唐胜利, 等. 矿用黄土、风积砂充填材料性能试验研究[J]. 辽宁工程技术大学学报: 自然科学版, 2022, 41(6): 503-510. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY202206004.htm

    LI Pengfei, CAO Xiaofan, TANG Shengli, et al. Experimental study on the performance of loess and aeolian sand filling materials for coal mine[J]. Journal of Liaoning Technical University: Natural Science, 2022, 41(6): 503-510. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY202206004.htm
    [47] 丁一. 风积砂充填体力学特性及强度演化特征研究[D]. 西安: 西安科技大学, 2021.

    DING Yi. Study on the mechanical properties and strength evolution characteristics of aeolian sand filling[D]. Xi'an: Xi'an University of Science and Technology, 2021.
    [48] 代育朝. 榆林神府矿区采空区膏体充填技术实验研究[D]. 西安: 西安科技大学, 2020.

    DAI Yuchao. Experimental study on paste filling technology of goaf in Shenfu mining area of Yulin[D]. Xi'an: Xi'an University of Science and Technology, 2020.
    [49] SUN Q, ZHANG J X, ZHOU N, et al. Roadway backfill coal mining to preserve surface water in western China[J]. Mine Water and the Environment, 2018, 37(2): 366-375. doi: 10.1007/s10230-017-0466-0
    [50] ZHOU N, YAN H, JIANG S Y, et al. Stability analysis of surrounding rock in paste backfill recovery of residual room Pillars[J]. Sustainability, 2019, 11(2): 478. doi: 10.3390/su11020478
    [51] ZHOU N, MA H B, OUYANG S, et al. Influential factors in transportation and mechanical properties of aeolian sand-based cemented filling material[J]. Minerals, 2019, 9(2): 116. doi: 10.3390/min9020116
    [52] 姜超. 沙基胶结充填材料渗透性试验研究[D]. 徐州: 中国矿业大学, 2020.

    JIANG Chao. Experimental study on permeability of sand-based cemented filling materials[D]. Xuzhou: China University of Mining and Technology, 2020.
    [53] 周鹏. 改性镁渣基充填材料的制备及微结构特性研究[D]. 西安: 西安科技大学, 2021.

    ZHOU Peng. Study on preparation and microstructure characteristics of modified magnesium slag-based backfill material[D]. Xi'an: Xi'an University of Science and Technology, 2021.
    [54] YANG P, SUO Y L, LIU L, et al. Study on the curing mechanism of cemented backfill materials prepared from sodium sulfate modified coal gasification slag[J]. Journal of Building Engineering, 2022, 62: 105318. doi: 10.1016/j.jobe.2022.105318
    [55] 刘永. 生态脆弱区保水开采高沙充填材料的研究[D]. 西安: 西安科技大学, 2017.

    LIU Yong. Study on high aeolian sand filling material for water conservation mining in ecologically fragile area[D]. Xi'an: Xi'an University of Science and Technology, 2017.
    [56] 李亮. 浅埋煤层柔性条带充填保水开采基础研究[D]. 西安: 西安科技大学, 2012.

    LI Liang. Basic study on flexible strip filling in water preserving mining of shallow seam[D]. Xi'an: Xi'an University of Science and Technology, 2012.
    [57] 邓念东, 丁一, 邢聪聪, 等. 基于PCA-BP神经网络的风积砂充填体强度预测[J]. 矿业研究与开发, 2021, 41(2): 109-113. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202102019.htm

    DENG Niandong, DING Yi, XING Congcong, et al. Strength prediction of eolian sand filling body based on PCA-BP neural network[J]. Mining Research and Development, 2021, 41(2): 109-113. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202102019.htm
    [58] LIU L, RUAN S S, QI C C, et al. Co-disposal of magnesium slag and high-calcium fly ash as cementitious materials in backfill[J]. Journal of Cleaner Production, 2021, 279: 123684. doi: 10.1016/j.jclepro.2020.123684
    [59] XIN J, LIU L, XU L H, et al. A preliminary study of aeolian sand-cement-modified gasification slag-paste backfill: fluidity, microstructure, and leaching risks[J]. Science of the Total Environment, 2022, 830: 154766. doi: 10.1016/j.scitotenv.2022.154766
    [60] ZHU L, GU W Z, LIU Z C, et al. Application of artificial intelligence models to predict the tensile strength of glass fiber-modified cemented backfill materials during the mine backfill process[J]. Geofluids, 2022, 2022: 4100638.
    [61] SUN Q, ZHANG J X, ZHOU N. Early-age strength of aeolian sand-based cemented backfilling materials: experimental results[J]. Arabian Journal for Science and Engineering, 2018, 43(4): 1697-1708. doi: 10.1007/s13369-017-2654-4
    [62] 吕健华, 王冲. 我国西部矿区膏体充填开采技术浅析[J]. 世界有色金属, 2020(8): 49-50. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO202008022.htm

    LÜ Jianhua, WANG Chong. Analysis of paste filling mining technology in western metal mining areas of China[J]. World Nonferrous Metals, 2020(8): 49-50. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO202008022.htm
    [63] ZHANG Q L, CHEN Q S, WANG X M. Cemented backfilling technology of paste-like based on aeolian sand and tailings[J]. Minerals, 2016, 6(4): 132. doi: 10.3390/min6040132
    [64] 巨峰. 固体充填采煤物料垂直输送技术开发与工程应用[D]. 徐州: 中国矿业大学, 2012. JÜ

    Feng. Development and engineering applications of solid materials vertical transportation system in backfill coal mining technology[D]. Xuzhou: China University of Mining and Technology, 2012.
    [65] 周楠. 固体充填防治坚硬顶板动力灾害机理研究[D]. 徐州: 中国矿业大学, 2014.

    ZHOU Nan. Mechanism of preventing dynamic hazards under hard roof by solid backfilling technology[D]. Xuzhou: China University of Mining and Technology, 2014.
    [66] 张强. 固体充填体与液压支架协同控顶机理研究[D]. 徐州: 中国矿业大学, 2015.

    ZHANG Qiang. Roof control mechanism by coordination with backfilled body and backfill support in solid backfill mining technology[D]. Xuzhou: China University of Mining and Technology, 2015.
    [67] 冯光明. 超高水充填材料及其充填开采技术研究与应用[D]. 徐州: 中国矿业大学, 2009.

    FENG Guangming. Research on the superhigh-water packing material and filling mining technology and their application[D]. Xuzhou: China University of Mining and Technology, 2009.
    [68] 王树帅, 徐斌, 李杨, 等. 基于RSM-BBD法胶结充填材料配比优化及工程应用[J]. 煤田地质与勘探, 2023, 51(3): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202303009.htm

    WANG Shushuai, XÜ Bin, LI Yang, et al. Optimization of cemented filling material ratio based on RSM-BBD method and engineering application[J]. Coal Geology & Exploration, 2023, 51(3): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202303009.htm
    [69] 徐斌, 李永亮, 路彬, 等. 胶结充填采场顶板承载特性及煤柱稳定性分析[J]. 矿业科学学报, 2022, 7(2): 200-209. XÜ doi: 10.19606/j.cnki.jmst.2022.02.007

    Bin, LI Yongliang, LU Bin, et al. Analysis of roof bearing characteristics and coal pillar stability of cemented backfill field[J]. Journal of Mining Science and Technology, 2022, 7(2): 200-209. doi: 10.19606/j.cnki.jmst.2022.02.007
    [70] 马立强, 王烁康, 余伊河, 等. 壁式连采连充保水采煤技术及实践[J]. 采矿与安全工程学报, 2021, 38(5): 902-910, 987. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202105006.htm

    MA Liqiang, WANG Shuokang, YU Yihe, et al. Technology and practice of continuous mining and backfilling with wall system for water conservation[J]. Journal of Mining & Safety Engineering, 2021, 38(5): 902-910, 987. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202105006.htm
    [71] 林海, 杨仁树, 李永亮, 等. 短壁连采连充式胶结充填采煤技术应用研究[J]. 工程科学学报, 2022, 44(6): 981-992. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202206002.htm

    LIN Hai, YANG Renshu, LI Yongliang, et al. Application of short-wall continuous mining and continuous backfilling cemented-fill mining technology[J]. Chinese Journal of Engineering, 2022, 44(6): 981-992. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202206002.htm
    [72] WANG S S, YANG R S, LI Y L, et al. Single-factor analysis and interaction terms on the mechanical and microscopic properties of cemented aeolian sand backfill[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(8): 1584-1595. doi: 10.1007/s12613-022-2574-5
    [73] 许延春, 张二蒙, 赵霖, 等. 黏度对浆液在裂隙岩体中扩散与充填规律的影响[J]. 矿业科学学报, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008

    XÜ Yanchun, ZHANG Ermeng, ZHAO Lin, et al. Study on the law of influence by slurry viscosity on the fractured aquifer grouting and diffusion[J]. Journal of Mining Science and Technology, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008
    [74] 杨捷, 武继龙, 晋俊宇. 矸石、粉煤灰高浓度料浆矸石颗粒悬浮性研究[J]. 矿业科学学报, 2019, 4(2): 127-132. http://kykxxb.cumtb.edu.cn/article/id/206

    YANG Jie, WU Jilong, JIN Junyu. Study on the suspended properties of gangue particles with high concentration of gangue and fly ash[J]. Journal of Mining Science and Technology, 2019, 4(2): 127-132. http://kykxxb.cumtb.edu.cn/article/id/206
    [75] XUE G L, YILMAZ E, FENG G R, et al. Reinforcement effect of polypropylene fiber on dynamic properties of cemented tailings backfill under SHPB impact loading[J]. Construction and Building Materials, 2021, 279: 122417. doi: 10.1016/j.conbuildmat.2021.122417
    [76] LI Y L, BIAN Y N, LIU C H. Damage and failure mechanism of basalt fiber-reinforced gangue-cemented backfill under uniaxial compression[J]. Construction and Building Materials, 2023, 400, 132872. doi: 10.1016/j.conbuildmat.2023.132872
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  11
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 修回日期:  2023-12-15
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回