留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度和骨料预湿对煤矸石砂浆流变性的影响

王振波 范雨润 左建平

王振波, 范雨润, 左建平. 温度和骨料预湿对煤矸石砂浆流变性的影响[J]. 矿业科学学报, 2024, 9(2): 190-198. doi: 10.19606/j.cnki.jmst.2024.02.006
引用本文: 王振波, 范雨润, 左建平. 温度和骨料预湿对煤矸石砂浆流变性的影响[J]. 矿业科学学报, 2024, 9(2): 190-198. doi: 10.19606/j.cnki.jmst.2024.02.006
WANG Zhenbo, FAN Yurun, ZUO Jianping. The impact of temperature and pre-wetting of aggregates on rheological properties of coal gangue mortars[J]. Journal of Mining Science and Technology, 2024, 9(2): 190-198. doi: 10.19606/j.cnki.jmst.2024.02.006
Citation: WANG Zhenbo, FAN Yurun, ZUO Jianping. The impact of temperature and pre-wetting of aggregates on rheological properties of coal gangue mortars[J]. Journal of Mining Science and Technology, 2024, 9(2): 190-198. doi: 10.19606/j.cnki.jmst.2024.02.006

温度和骨料预湿对煤矸石砂浆流变性的影响

doi: 10.19606/j.cnki.jmst.2024.02.006
基金项目: 

国家自然科学基金 51808545

国家自然科学基金 52225404

中央高校基本科研业务费专项资金 2023ZKPYLJ05

详细信息
    作者简介:

    王振波(1989—),男,江苏徐州人,博士,副教授,主要从事水泥基材料、固废建材化利用方面的研究与教学工作。Tel:13811446552,E-mail:wangzb@cumtb.edu.cn

    通讯作者:

    左建平(1978—),男,江西高安人,博士,教授,主要从事采矿岩石力学与岩层控制方面的研究工作。Tel:010-62331358,E-mail:zjp@cumtb.edu.cn

  • 中图分类号: TU578;TD350

The impact of temperature and pre-wetting of aggregates on rheological properties of coal gangue mortars

  • 摘要: 矿山充填、巷道喷射等工程对施作材料的流变性要求较高。水泥基材料中的骨料类型、状态与所处的环境对砂浆流变性能有显著影响。本文以煤矸石砂代替石英砂作为水泥基材料的细骨料,研究温度与骨料预湿对砂浆流变性的影响规律及作用机理。结果表明,煤矸石砂浆的剪切应力-剪切速率关系符合Herschel-Bulkley(H-B)模型特征,流变指数大于1,稠度明显大于石英砂砂浆;煤矸石砂浆的表观黏度随温度升高而不断降低,但骨料预湿的影响不大;30 ℃下煤矸石砂浆的屈服应力为2.99 Pa,比10 ℃下提高1.45倍,预湿后则提高2.13倍;煤矸石砂浆的触变环面积大于石英砂砂浆,预湿煤矸石砂浆的触变环面积为398.4 Pa/s,干燥煤矸石砂浆则减小为283.3 Pa/s。研究结果将为煤矸石砂的合理利用、复杂环境下流变材料的设计与制备提供支撑。
  • 图  1  原材料颗粒级配

    Figure  1.  Particle size distribution of raw materials

    图  2  流变测试仪器

    R—转子半径;H—平板间距

    Figure  2.  Equipment for rheological test

    图  3  流变测量程序

    Figure  3.  Test procedure for rheology

    图  4  两种砂浆的流变曲线

    Figure  4.  Rheological curves of two mortars

    图  5  两种砂浆H-B模型拟合曲线

    Figure  5.  H-B model fitting curves of two mortars

    图  6  砂浆表观黏度随剪切速率的变化规律曲线

    Figure  6.  Variations of apparent viscosity of mortars with shear rate

    图  7  温度和预湿对两种砂浆表观黏度的影响

    Figure  7.  Influence of temperature and pre-wetting on the apparent viscosity of two mortars

    图  8  两种砂浆的屈服应力

    Figure  8.  Yield stress of two mortars

    图  9  两种砂浆的触变环曲线

    Figure  9.  Thixotropic ring curves of two mortars

    图  10  两种砂浆的触变环面积

    Figure  10.  Thixotropic ring area of two mortars

    图  11  石英砂和煤矸石砂光学显微镜照片

    Figure  11.  Optical microscope photographs of quartz sand and gangue sand

    图  12  煤矸石砂SEM图

    Figure  12.  SEM image of gangue sand

    图  13  煤矸石砂XRD图谱

    Figure  13.  XRD spectrum of gangue sand

    图  14  新拌砂浆微结构

    Figure  14.  Aggregates in freshly-mixed mortar

    表  1  胶凝材料的化学组成

    Table  1.   Chemical composition of binders  %

    类型 CaO SiO2 Al2O3 Fe2O3 SO3 MgO K2O LOI
    水泥 66.54 15.99 3.83 4.26 2.78 1.61 1.46 2.20
    粉煤灰 9.80 51.49 24.36 5.49 2.14 1.20 1.04 2.34
    下载: 导出CSV

    表  2  试验配合比

    Table  2.   Test mix proportion

    配合比 水泥 粉煤灰 减水剂
    石英砂砂浆 0.7 0.3 0.35 0.35 0.086
    煤矸石砂浆 0.7 0.3 0.35 0.35 0.258
    注:砂质量为未预湿的质量。
    下载: 导出CSV

    表  3  两种水泥砂浆的流变参数

    Table  3.   Rheological parameters of two cement mortars

    编号 τ0 K n R2
    10-Dry-Quartz 0.36 0.13 1.11 0.999
    20-Dry-Quartz 0.35 0.17 1.16 0.999
    30-Dry-Quartz 4.14 0.18 1.17 0.999
    10-PreWet-Quartz 0.23 0.22 1.15 0.999
    20-PreWet-Quartz 1.51 0.17 1.13 0.999
    30-PreWet-Quartz 6.31 0.24 1.09 0.999
    10-Dry-Gangue 2.05 0.24 1.34 0.999
    20-Dry-Gangue 2.72 0.21 1.31 0.999
    30-Dry-Gangue 2.99 0.22 1.26 0.999
    10-PreWet-Gangue 2.39 0.27 1.31 0.999
    20-PreWet-Gangue 3.34 0.22 1.33 0.999
    30-PreWet-Gangue 5.18 0.22 1.26 0.999
    下载: 导出CSV
  • [1] 王珩, 陆采荣, 刘伟宝, 等. 砂的级配特性对砂浆流变性的影响及预测[J]. 材料导报, 2020, 34(S2): 1255-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2052.htm

    WANG Heng, LU Cairong, LIU Weibao, et al. Influence of sand gradation characteristics on rheological properties of mortar and its prediction[J]. Materials Reports, 2020, 34(S2): 1255-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2052.htm
    [2] 林忠财, 许潇, Hamideh Mehdizadeh, 等. 特细砂替代率对自密实砂浆流变性的影响[J]. 湖南大学学报: 自然科学版, 2022, 49(1): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202201011.htm

    LIN Zhongcai, XU Xiao, MEHDIZADEH H, et al. Influence of ultra fine sand replacement ratio on rheology of self-consolidating mortar[J]. Journal of Hunan University: Natural Sciences, 2022, 49(1): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202201011.htm
    [3] ZHU L L, JIN Z H, ZHAO Y, et al. Rheological properties of cemented coal gangue backfill based on response surface methodology[J]. Construction and Building Materials, 2021, 306: 124836. doi: 10.1016/j.conbuildmat.2021.124836
    [4] PETIT J Y, WIRQUIN E, DUTHOIT B. Influence of temperature on yield value of highly flowable micromortars made with sulfonate-based superplasticizers[J]. Cement and Concrete Research, 2005, 35(2): 256-266. doi: 10.1016/j.cemconres.2004.04.025
    [5] ORTIZ J, AGUADO A, AGULLó L, et al. Influence of environmental temperature and moisture content of aggregates on the workability of cement mortar[J]. Construction and Building Materials, 2009, 23(5): 1808-1814. doi: 10.1016/j.conbuildmat.2008.09.016
    [6] WANG M, ZHU Z J, LIU R T, et al. Influence of extreme high-temperature environment and hydration time on the rheology of cement slurry[J]. Construction and Building Materials, 2021, 295: 123684. doi: 10.1016/j.conbuildmat.2021.123684
    [7] ZHU H, KIM Y D, DE KEE D. Non-Newtonian fluids with a yield stress[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 129(3): 177-181. doi: 10.1016/j.jnnfm.2005.06.001
    [8] NGUYEN V H, REMOND S, GALLIAS J L. Influence of cement grouts composition on the rheological behaviour[J]. Cement and Concrete Research, 2011, 41(3): 292-300. doi: 10.1016/j.cemconres.2010.11.015
    [9] NEHDI M, RAHMAN M A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction[J]. Cement and Concrete Research, 2004, 34(11): 1993-2007. doi: 10.1016/j.cemconres.2004.02.020
    [10] GÜLLÜ H. Comparison of rheological models for jet grout cement mixtures with various stabilizers[J]. Construction and Building Materials, 2016, 127: 220-236. doi: 10.1016/j.conbuildmat.2016.09.129
    [11] PETIT J Y, KHAYAT K H, WIRQUIN E. Coupled effect of time and temperature on variations of yield value of highly flowable mortar[J]. Cement and Concrete Research, 2006, 36(5): 832-841. doi: 10.1016/j.cemconres.2005.11.001
    [12] PETIT J Y, WIRQUIN E, KHAYAT K H. Effect of temperature on the rheology of flowable mortars[J]. Cement and Concrete Composites, 2010, 32(1): 43-53. doi: 10.1016/j.cemconcomp.2009.10.003
    [13] GOȽASZEWSKI J, SZWABOWSKI J. Influence of superplasticizers on rheological behaviour of fresh cement mortars[J]. Cement and Concrete Research, 2004, 34(2): 235-248. doi: 10.1016/j.cemconres.2003.07.002
    [14] PETIT J Y, WIRQUIN E, VANHOVE Y, et al. Yield stress and viscosity equations for mortars and self-consolidating concrete[J]. Cement and Concrete Research, 2007, 37(5): 655-670. doi: 10.1016/j.cemconres.2007.02.009
    [15] WILLIAMS D A, SAAK A W, JENNINGS H M. The influence of mixing on the rheology of fresh cement paste[J]. Cement and Concrete Research, 1999, 29(9): 1491-1496. doi: 10.1016/S0008-8846(99)00124-6
    [16] 唐修生, 蔡跃波, 温金保, 等. 磨细矿渣复合浆体流变参数与流动度的相关性[J]. 硅酸盐学报, 2014, 42(5): 648-652. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201405016.htm

    TANG Xiusheng, CAI Yuebo, WEN Jinbao, et al. Correlation between slump flow and rheological parameters of compound pastes with high volume of ground slag[J]. Journal of the Chinese Ceramic Society, 2014, 42(5): 648-652. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201405016.htm
    [17] JUIMO TCHAMDJOU W H, CHERRADI T, ABIDI M L, et al. Influence of different amounts of natural pozzolan from volcanic scoria on the rheological properties of Portland cement pastes[J]. Energy Procedia, 2017, 139: 696-702. doi: 10.1016/j.egypro.2017.11.274
    [18] VANCE K, KUMAR A, SANT G, et al. The rheological properties of ternary binders containing Portland cement, limestone, and metakaolin or fly ash[J]. Cement and Concrete Research, 2013, 52: 196-207. doi: 10.1016/j.cemconres.2013.07.007
    [19] 张志军, 周琦, 温亚培, 等. 煤泥含量对重介质悬浮液稳定性和流动性的影响[J]. 矿业科学学报, 2020, 5(6): 696-702. doi: 10.19606/j.cnki.jmst.2020.06.013

    ZHANG Zhijun, ZHOU Qi, WEN Yapei, et al. Effect of coal slime content on dense medium suspension stability and fluidity[J]. Journal of Mining Science and Technology, 2020, 5(6): 696-702. doi: 10.19606/j.cnki.jmst.2020.06.013
    [20] ROMAGNOLI M, SASSATELLI P, LASSINANTTI GUALTIERI M, et al. Rheological characterization of fly ash-based suspensions[J]. Construction and Building Materials, 2014, 65: 526-534. doi: 10.1016/j.conbuildmat.2014.04.130
    [21] ROMAGNOLI M, LEONELLI C, KAMSE E, et al. Rheology of geopolymer by DOE approach[J]. Construction and Building Materials, 2012, 36: 251-258. doi: 10.1016/j.conbuildmat.2012.04.122
    [22] 许延春, 张二蒙, 赵霖, 等. 黏度对浆液在裂隙岩体中扩散与充填规律的影响[J]. 矿业科学学报, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008

    XU Yanchun, ZHANG Ermeng, ZHAO Lin, et al. Study on the law of influence by slurry viscosity on the fractured aquifer grouting and diffusion[J]. Journal of Mining Science and Technology, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008
    [23] 王栋民, 张力冉, 张伟利, 等. 超塑化剂对新拌水泥浆体多级絮凝结构的影响[J]. 建筑材料学报, 2012, 15(6): 755-759. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201206006.htm

    WANG Dongmin, ZHANG Liran, ZHANG Weili, et al. Effects of superplasticizers on multi-level flocculation structure of fresh cement paste[J]. Journal of Building Materials, 2012, 15(6): 755-759. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201206006.htm
    [24] VIKAN H, JUSTNES H, WINNEFELD F, et al. Correlating cement characteristics with rheology of paste[J]. Cement and Concrete Research, 2007, 37(11): 1502-1511. doi: 10.1016/j.cemconres.2007.08.011
    [25] YIM H J, KIM J H, SHAH S P. Cement particle flocculation and breakage monitoring under Couette flow[J]. Cement and Concrete Research, 2013, 53: 36-43. doi: 10.1016/j.cemconres.2013.05.018
    [26] ROUSSEL N. Steady and transient flow behaviour of fresh cement pastes[J]. Cement and Concrete Research, 2005, 35(9): 1656-1664. doi: 10.1016/j.cemconres.2004.08.001
    [27] 申文凯, 元强, 纪友红, 等. 剪切速率和温度对低水胶比水泥浆流变性能的影响[J]. 硅酸盐通报, 2023, 42(1): 48-56, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202301004.htm

    SHEN Wenkai, YUAN Qiang, JI Youhong, et al. Effects of shear rate and temperature on rheology of cement paste with low water-to-binder ratio[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 48-56, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202301004.htm
    [28] 张艳荣. 水泥—化学外加剂—水分散体系早期微结构与流变性[D]. 北京: 清华大学, 2014.

    ZHANG Yanrong. Study on The microstructure and rheological properties of cement-chemical admixtures-water dispersion system at early stage[D]. Beijing: Tsinghua University, 2014.
    [29] TIAN C J, WANG Y Z, WEI Y P, et al. Study on the rheological behaviour of UHPC considering the combination of temperature and mineral admixture[J]. Road Materials and Pavement Design, 2024, 25(2): 344-361. doi: 10.1080/14680629.2023.2207662
    [30] 刘艳, 周梅, 张凯, 等. 基于RSM-BBD的自燃煤矸石骨料透水混凝土配比优化研究[J]. 矿业科学学报, 2022, 7(5): 565-576. doi: 10.19606/j.cnki.jmst.2022.05.007

    LIU Yan, ZHOU Mei, ZHANG Kai, et al. The optimization of pervious concrete ratios with spontaneous combustion gangue aggregates based on the RSM-BBD method[J]. Journal of Mining Science and Technology, 2022, 7(5): 565-576. doi: 10.19606/j.cnki.jmst.2022.05.007
    [31] CHEN J S, CHANG M K, LIN K. Influence of coarse aggregate shape on the strength of asphalt concrete mixtures[J]. Journal of the Eastern Asia Society for Transportation Studies, 2005, 6: 1062-1075.
    [32] 郭海桥, 程伟, 尚志, 等. 水分和冻融循环对酷寒矿区煤矸石风化崩解速率影响的定量研究[J]. 煤炭学报, 2019, 44(12): 3859-3864. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912028.htm

    GUO Haiqiao, CHENG Wei, SHANG Zhi, et al. Quantitative determination of the effect of moisture and freeze/thaw cycles on coal gaugue decay rate in severe cold mining areas[J]. Journal of China Coal Society, 2019, 44(12): 3859-3864. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912028.htm
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  16
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-03
  • 修回日期:  2024-01-20
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回