留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海水腐蚀对砂岩物理力学特性与微观结构破坏特征的影响研究

周韬 陈昌鹏 张旸旸 殷雪菡 陈家嵘

周韬, 陈昌鹏, 张旸旸, 殷雪菡, 陈家嵘. 海水腐蚀对砂岩物理力学特性与微观结构破坏特征的影响研究[J]. 矿业科学学报, 2024, 9(2): 178-189. doi: 10.19606/j.cnki.jmst.2024.02.005
引用本文: 周韬, 陈昌鹏, 张旸旸, 殷雪菡, 陈家嵘. 海水腐蚀对砂岩物理力学特性与微观结构破坏特征的影响研究[J]. 矿业科学学报, 2024, 9(2): 178-189. doi: 10.19606/j.cnki.jmst.2024.02.005
ZHOU Tao, CHEN Changpeng, ZHANG Yangyang, YIN Xuehan, CHEN Jiarong. Experimental study on the influence of seawater corrosion on the physical and mechanical properties and microstructural failure behavior of sandstone[J]. Journal of Mining Science and Technology, 2024, 9(2): 178-189. doi: 10.19606/j.cnki.jmst.2024.02.005
Citation: ZHOU Tao, CHEN Changpeng, ZHANG Yangyang, YIN Xuehan, CHEN Jiarong. Experimental study on the influence of seawater corrosion on the physical and mechanical properties and microstructural failure behavior of sandstone[J]. Journal of Mining Science and Technology, 2024, 9(2): 178-189. doi: 10.19606/j.cnki.jmst.2024.02.005

海水腐蚀对砂岩物理力学特性与微观结构破坏特征的影响研究

doi: 10.19606/j.cnki.jmst.2024.02.005
基金项目: 

国家自然科学基金 52274090

广东省自然科学基金 2022A1515010827

深圳市自然科学基金 JCYJ20210324093400001

详细信息
    作者简介:

    周韬(1986—),男,湖南浏阳人,副教授,硕士生导师,主要从事岩石动力学和深部岩体力学等方面的研究工作。Tel:15219499098,E-mail:tzhou@szu.edu.cn

  • 中图分类号: TD315

Experimental study on the influence of seawater corrosion on the physical and mechanical properties and microstructural failure behavior of sandstone

  • 摘要: 针对海底隧道围岩在海水腐蚀下物理力学性能劣化的问题,选取典型砂岩作为研究对象,基于深圳海底隧道所在区域海水的取样数据配制不同浓度的模拟海水溶液,对砂岩试样进行不同浓度、不同时间的腐蚀浸泡处理,再进行单轴压缩试验,并结合声发射与扫描电子显微镜(SEM)技术,对海水腐蚀损伤砂岩的物理力学特性、破坏过程和微观结构演化特征进行分析研究。结果表明:随着腐蚀溶液浓度增加,砂岩试样表面越早发生脱落且面积越大,试样密度小幅度增加;峰值应力和弹性模量均随腐蚀时间增加而降低,但二者降低幅度及速率不同;随着腐蚀时间以及浓度的增加,除高浓度组砂岩试样在腐蚀45 d之后声发射事件活跃期有所缩短外,其余组砂岩试样的声发射事件活跃期均有所增长,砂岩试样内部缺陷逐渐发育,结构逐渐疏松,蜂窝状腐蚀区域面积增大,盐离子白色结晶区域逐渐扩大。
  • 图  1  砂岩试样浸泡腐蚀处理过程

    Figure  1.  Soaking corrosion treatment process of sandstone specimens

    图  2  不同浓度溶液腐蚀下砂岩外观形貌变化对比

    Figure  2.  Comparison of changes in surface morphology of sandstone corroded by different concentration of solutions

    图  3  不同浓度溶液腐蚀下砂岩试样纵波波速变化规律

    Figure  3.  Changes in P-wave velocity of sandstone under corrosion of different concentration solutions

    图  4  XRD数据分析结果

    Figure  4.  Results of XRD data analysis

    图  5  不同浓度溶液腐蚀下砂岩试样单轴压缩试验的应力应变曲线

    Figure  5.  Typical stress-strain curves of uniaxial compression tests on sandstone specimens corroded by different concentration solutions

    图  6  不同浓度溶液腐蚀下砂岩试样峰值应力变化规律

    Figure  6.  Changes in peak stress of sandstone specimens under corrosion of different concentration solutions

    图  7  不同浓度溶液腐蚀下砂岩试样弹性模量变化规律

    Figure  7.  Changes in Young's modulus of sandstone speci-mens under corrosion of different concentration solutions

    图  8  典型砂岩试样的时间-应力曲线及对应的声发射信号

    Figure  8.  Typical stress-time curve and acoustic emission signals of sandstone specimen under compression

    图  9  不同浓度溶液腐蚀下典型砂岩试样的时间-应力曲线及声发射信号(腐蚀时间:45 d和75 d)

    Figure  9.  Typical stress-time curves and acoustic emission signals of sandstone specimen under corrosion of different concentration solutions(corrosion time: 45d and 75d)

    图  10  砂岩破坏表面形貌图片(腐蚀时间:0 d)

    Figure  10.  Surface morphology of failed sandstone specimens(corrosion time: 0d)

    图  11  不同浓度溶液腐蚀下砂岩试样破坏表面形貌(腐蚀时间:30 d和75 d)

    Figure  11.  Surface morphology of failed sandstone specimens corroded by different concentration of solutions(corrosion time: 30 d and 75 d)

    表  1  模拟海水溶液配制方案

    Table  1.   Simulated seawater solution preparation programme

    溶液编号 浓度水平 溶液初始成分 氯离子浓度/(g·L-1) 硫酸根离子浓度/(g·L-1) pH值
    A 蒸馏水 0 0 7
    B 正常浓度 NaCl、Na2SO4 13.91 1.810 7.76
    C 低浓度 NaCl、Na2SO4 0.278 0.036 7.76
    D 高浓度 NaCl、Na2SO4 139.10 18.10 7.76
    下载: 导出CSV

    表  2  不同浓度溶液腐蚀75 d后的质量及密度变化

    Table  2.   Mass and density changes after 75 d of corrosion in different concentration solutions

    溶液组 质量变化量/g 密度变化率/%
    A -0.54 -0.11
    C 0.42 0.09
    B 1.07 0.22
    D 6.32 1.33
    下载: 导出CSV
  • [1] 彭芳梅. 《粤港澳大湾区发展规划纲要》解读与启示[J]. 特区实践与理论, 2019(2): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TQNN201902017.htm

    PENG Fangmei. Interpretation and enlightenment of the outline of Guangdong-Hong Kong-Macao greater bay area development plan[J]. Practice and Theory of SEZS, 2019(2): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TQNN201902017.htm
    [2] PAN J L, CAI M F, LI P, et al. A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression[J]. Journal of Central South University, 2022, 29(2): 486-498. doi: 10.1007/s11771-022-4949-1
    [3] 张峰瑞, 姜谙男, 江宗斌, 等. 化学腐蚀-冻融综合作用下岩石损伤蠕变特性试验研究[J]. 岩土力学, 2019, 40(10): 3879-3888. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910022.htm

    ZHANG Fengrui, JIANG Annan, JIANG Zongbin, et al. Experimental study of damage and creep property of rock under coupled chemical corrosion and freeze-thaw cycle[J]. Rock and Soil Mechanics, 2019, 40(10): 3879-3888. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910022.htm
    [4] 丁梧秀, 冯夏庭. 化学腐蚀下裂隙岩石的损伤效应及断裂准则研究[J]. 岩土工程学报, 2009, 31(6): 899-904. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200906016.htm

    DING Wuxiu, FENG Xiating. Damage effect and fracture criterion of rock with multi-preexisting cracks under chemical erosion[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 899-904. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200906016.htm
    [5] 刘茜, 郑西来, 任加国, 等. 海水入侵过程中水-岩相互作用的土柱试验研究[J]. 海洋环境科学, 2008, 27(5): 443-446, 457. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ200805009.htm

    LIU Qian, ZHENG Xilai, REN Jiaguo, et al. Experimental study of column displacement in water-rock interaction during seawater intrusion[J]. Marine Environmental Science, 2008, 27(5): 443-446, 457. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ200805009.htm
    [6] 吴吉春, 薛禹群, 张志辉. 海水入侵含水层中水一岩间阳离子*交换的实验研究[J]. 南京大学学报: 自然科学版, 1996, 32(1): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ601.012.htm

    WU Jichun, XUE Yuqun, ZHANG Zhihui. Experimental study on cation exchange between water and rock in seawater intrusion aquifer[J]. Journal of Naijing University: Natural Sciences, 1996, 32(1): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ601.012.htm
    [7] 智国军, 鞠金峰, 刘润, 等. 水岩相互作用对煤矿地下水库水质影响机理研究[J]. 采矿与安全工程学报, 2022, 39(4): 779-785. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204015.htm

    ZHI Guojun, JU Jinfeng, LIU Run, et al. Water-rock interaction and its influence on water quality in the underground reservoir[J]. Journal of Mining & Safety Engineering, 2022, 39(4): 779-785. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204015.htm
    [8] 杨晓松, 段庆宝, 陈建业. 汶川地震断裂带水岩相互作用及其对断裂带演化影响[J]. 地球物理学报, 2018, 61(5): 1758-1770. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805008.htm

    YANG Xiaosong, DUAN Qingbao, CHEN Jianye. Fluid-rock interactions and their effects on the evolution of the Wenchuan earthquake fault zone[J]. Chinese Journal of Geophysics, 2018, 61(5): 1758-1770. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805008.htm
    [9] 张荣华, 胡书敏, 张雪彤. 长江中下游典型火山盆地的水岩相互作用和金属矿床蚀变分带[J]. 岩石学报, 2017, 33(10): 3302-3318. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201710021.htm

    ZHANG Ronghua, HU Shumin, ZHANG Xuetong. Water-rock interactions and metal-alteration zoning in volcanic basins of Middle-Lower Yangtze River Valley[J]. Acta Petrologica Sinica, 2017, 33(10): 3302-3318. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201710021.htm
    [10] 刘四兵, 沈忠民, 刘昊年, 等. 川西坳陷中段上三叠统须家河组水岩相互作用机制[J]. 石油学报, 2013, 34(1): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301005.htm

    LIU Sibing, SHEN Zhongmin, LIU Haonian, et al. Mechanism of water-rock interaction of the Upper Triassic Xujiahe Formation in the middle part of western Sichuan depression[J]. Acta Petrolei Sinica, 2013, 34(1): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301005.htm
    [11] 崔强, 冯夏庭, 薛强, 等. 化学腐蚀下砂岩孔隙结构变化的机制研究[J]. 岩石力学与工程学报, 2008, 27(6): 1209-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200806018.htm

    CUI Qiang, FENG Xiating, XUE Qiang, et al. Mechanism study of porosity structure change of sandstone under chemical corrosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1209-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200806018.htm
    [12] 冯夏庭, 王川婴, 陈四利. 受环境侵蚀的岩石细观破裂过程试验与实时观测[J]. 岩石力学与工程学报, 2002, 21(7): 935-939. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200207000.htm

    FENG Xiating, WANG Chuanying, CHEN Sili. Testing study and real-time observation of rock meso-cracking process under chemical erosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7): 935-939. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200207000.htm
    [13] 刘镇. 海洋环境下混凝土氯离子渗透性评价[J]. 硅酸盐学报, 2023, 51(11): 2846-2856. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202311010.htm

    LIU Zhen. Chloride permeability evaluation of concretes in marine environment[J]. Journal of the Chinese Ceramic Society, 2023, 51(11): 2846-2856. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202311010.htm
    [14] 汤连生, 张鹏程. 水化学损伤对岩石弹性模量的影响[J]. 中山大学学报: 自然科学版, 2000, 39(5): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200005028.htm

    TANG Liansheng, ZHANG Pengcheng. Influence of chemical damage of water on elastic modulus of rocks[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2000, 39(5): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200005028.htm
    [15] 汤连生, 张鹏程, 王思敬. 水-岩化学作用的岩石宏观力学效应的试验研究[J]. 岩石力学与工程学报, 2002, 21(4): 526-531. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200206014.htm

    TANG Liansheng, ZHANG Pengcheng, WANG Sijing. Testing study on macroscopic mechanics effect of chemical action of water on rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(4): 526-531. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200206014.htm
    [16] 汤连生, 张鹏程, 王思敬. 水-岩化学作用之岩石断裂力学效应的试验研究[J]. 岩石力学与工程学报, 2002, 21(6): 822-827. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200206014.htm

    TANG Liansheng, ZHANG Pengcheng, WANG Sijing. Testing study on effects of chemical action of aqueous solution on crack propagation in rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 822-827. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200206014.htm
    [17] 周翠英, 邓毅梅, 谭祥韶, 等. 饱水软岩力学性质软化的试验研究与应用[J]. 岩石力学与工程学报, 2005, 24(1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200501005.htm

    ZHOU Cuiying, DENG Yimei, TAN Xiangshao, et al. Experimental research on the softening of mechanical properties of saturated soft rocks and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200501005.htm
    [18] 刘建, 乔丽苹, 李鹏. 砂岩弹塑性力学特性的水物理化学作用效应: 试验研究与本构模型[J]. 岩石力学与工程学报, 2009, 28(1): 20-29.

    LIU Jian, QIAO Liping, LI Peng. Experimental studies and constitutive model of elastoplastic mechanical behaviors of sandstone with hydro-physicochemical influencing effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 20-29.
    [19] 王伟, 刘桃根, 吕军, 等. 水岩化学作用对砂岩力学特性影响的试验研究[J]. 岩石力学与工程学报, 2012, 31(S2): 3607-3617. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2024.htm

    WANG Wei, LIU Taogen, LÜ Jun, et al. Experimental study of influence of water-rock chemical interaction on mechanical characteristics of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3607-3617. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2024.htm
    [20] 朱大奎, 李海宇, 潘少明, 等. 深圳湾海底沉积层的研究[J]. 地理学报, 1999, 54(3): 224-232. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB903.003.htm

    ZHU Dakui, LI Haiyu, PAN Shaoming, et al. The seabed sediment of the Shenzhen Bay, China[J]. Acta Geographica Sinica, 1999, 54(3): 224-232. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB903.003.htm
    [21] 张海军, 史本宁, 焦学尧, 等. 深圳近海环境重金属空间分布特征与风险评价[J]. 北京大学学报: 自然科学版, 2021, 57(4): 679-690. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ202104010.htm

    ZHANG Haijun, SHI Benning, JIAO Xueyao, et al. Spatial distribution characteristics and risk assessment of heavy metals in Shenzhen coastal areas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(4): 679-690. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ202104010.htm
    [22] 王艳磊, 唐建新, 江君, 等. 水-岩化学作用下灰砂岩的力学特性与参数损伤效应[J]. 煤炭学报, 2017, 42(1): 227-235. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701031.htm

    WANG Yanlei, TANG Jianxin, JIANG Jun, et al. Mechanical properties and parameter damage effect of malmstone under chemical corrosion of water-rock interaction[J]. Journal of China Coal Society, 2017, 42(1): 227-235. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701031.htm
    [23] 李鹏, 刘建, 李国和, 等. 水化学作用对砂岩抗剪强度特性影响效应研究[J]. 岩土力学, 2011, 32(2): 380-386. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102014.htm

    LI Peng, LIU Jian, LI Guohe, et al. Experimental study for shear strength characteristics of sandstone under water-rock interaction effects[J]. Rock and Soil Mechanics, 2011, 32(2): 380-386. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102014.htm
    [24] 邓华锋, 肖志勇, 李建林, 等. 水岩作用下损伤砂岩强度劣化规律试验研究[J]. 岩石力学与工程学报, 2015, 34(S1): 2690-2698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1013.htm

    DENG Huafeng, XIAO Zhiyong, LI Jianlin, et al. Deteriorating change rule test research of damage sandstone strength under water-rock interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2690-2698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1013.htm
    [25] 乔丽苹, 刘建, 冯夏庭. 砂岩水物理化学损伤机制研究[J]. 岩石力学与工程学报, 2007, 26(10): 2117-2124. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200710022.htm

    QIAO Liping, LIU Jian, FENG Xiating. Study on damage mechanism of sandstone under hydro-physico-chemical effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(10): 2117-2124. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200710022.htm
    [26] 于洋, 王泽华, 唐才萱. 单轴压缩下酸腐蚀花岗岩能量演化与分形特征[J]. 岩土力学, 2023, 44(7): 1971-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202307010.htm

    YU Yang, WANG Zehua, TANG Caixuan. Energy evolution and fractal characteristics of acid corroded granite under uniaxial compression[J]. Rock and Soil Mechanics, 2023, 44(7): 1971-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202307010.htm
    [27] 邓华锋, 支永艳, 段玲玲, 等. 水-岩作用下砂岩力学特性及微细观结构损伤演化[J]. 岩土力学, 2019, 40(9): 3447-3456. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm

    DENG Huafeng, ZHI Yongyan, DUAN Lingling, et al. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction[J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm
    [28] 陈家嵘, 周昌台, 周韬, 等. 压剪荷载下含单一裂隙砂岩的应变演化与破坏特征研究[J]. 岩石力学与工程学报, 2023, 42(7): 1743-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202307014.htm

    CHEN Jiarong, ZHOU Changtai, ZHOU Tao, et al. Experimental study on strain evolution and failure behavior of sandstone containing a single pre-existing flaw under compressive-shear loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(7): 1743-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202307014.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  12
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-04
  • 修回日期:  2024-01-23
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回