留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤炭地下气化渗透反应墙构建材料的吸附和渗流特性研究

王凡 徐冰 谌伦建 邢宝林 苏发强

王凡, 徐冰, 谌伦建, 邢宝林, 苏发强. 煤炭地下气化渗透反应墙构建材料的吸附和渗流特性研究[J]. 矿业科学学报, 2024, 9(2): 167-177. doi: 10.19606/j.cnki.jmst.2024.02.004
引用本文: 王凡, 徐冰, 谌伦建, 邢宝林, 苏发强. 煤炭地下气化渗透反应墙构建材料的吸附和渗流特性研究[J]. 矿业科学学报, 2024, 9(2): 167-177. doi: 10.19606/j.cnki.jmst.2024.02.004
WANG Fan, XV Bing, CHEN Lunjian, XING Baolin, SU Faqiang. Adsorption and seepage properties of permeable reaction barrier construction materials for underground coal gasification[J]. Journal of Mining Science and Technology, 2024, 9(2): 167-177. doi: 10.19606/j.cnki.jmst.2024.02.004
Citation: WANG Fan, XV Bing, CHEN Lunjian, XING Baolin, SU Faqiang. Adsorption and seepage properties of permeable reaction barrier construction materials for underground coal gasification[J]. Journal of Mining Science and Technology, 2024, 9(2): 167-177. doi: 10.19606/j.cnki.jmst.2024.02.004

煤炭地下气化渗透反应墙构建材料的吸附和渗流特性研究

doi: 10.19606/j.cnki.jmst.2024.02.004
基金项目: 

国家自然科学基金-新疆联合基金 U1803114

河南省自然科学基金 232300421335

河南省科技攻关项目 212102311069

河南省博士后科研项目 HN2022021

详细信息
    作者简介:

    王凡(1992—),男,湖北黄冈人,博士研究生,主要从事煤炭地下气化污染物迁移扩散等方面的研究工作。Tel:13203968009,E-mail:bambooname@126.com

    通讯作者:

    谌伦建(1959—),男,四川射洪人,博士,教授,博士生导师,主要从事煤炭地下气化等洁净煤技术教学与研究工作。Tel:0391-3987085,E-mail:lunjianc@hpu.edu.cn

  • 中图分类号: TD984; X523

Adsorption and seepage properties of permeable reaction barrier construction materials for underground coal gasification

  • 摘要: 煤炭地下气化(UCG)带来的地下水污染风险是限制其推广发展的主要问题之一。渗透反应墙(PRB)修复技术是地下水原位修复的主要研究热点,而PRB材料特性是影响其正常运行的关键。本文首先探究了砂、有机膨润土、活性炭对UCG特征有机污染物苯酚的吸附特性,在此基础上,采用自建的渗流实验系统研究了砂、有机膨润土、活性炭及其混合物的吸附和渗透特性对净化污染水的综合影响效果。结果表明:①有机膨润土对溶液中苯酚的吸附速率较快,可在10 min之内达到吸附平衡,但吸附容量较小(1.98 mg/g);活性炭对溶液中苯酚的吸附速率较慢,但吸附容量较大(2.22 mg/g)。②有机膨润土对苯酚的等温吸附可用Freundlich模型描述,模型参数kF = 0.040,n = 1.207;活性炭对苯酚的等温吸附可用Langmuir模型描述,模型参数Smax = 2.44 mg/g,kL = 0.125 L/mg。③砂和活性炭的渗透系数分别为1.006×10-3 m/s和4.761×10-2 m/s,砂与活性炭或有机膨润土混合可有效调节混合材料的渗透性,当砂与有机膨润土质量比由1∶1增大到3∶1时,其混合材料的渗透系数由2.624×10-6增大至3.468×10-5 m/s;而砂与活性炭质量比由1∶1增大到3∶1时,其混合材料的渗透系数由1.379×10-3减小至1.301×10-4 m/s。
  • 图  1  苯酚标准曲线

    Figure  1.  Phenol standard curve

    图  2  渗流实验系统和实验原理

    Figure  2.  Seepage experimental system and its operating mechanism

    图  3  压力传感器校正

    Figure  3.  Pressure sensor calibration

    图  4  有机膨润土对苯酚吸附的动力吸附

    Figure  4.  Kinetic adsorption of phenol by organic bentonite

    图  5  活性炭对苯酚的动力吸附

    Figure  5.  Kinetic adsorption of phenol by activated carbon

    图  6  有机膨润土等温吸附模型拟合曲线

    Figure  6.  Isothermal adsorption model fitting curve of organic bentonite

    图  7  活性炭等温吸附模型拟合曲线

    Figure  7.  Isothermal adsorption model fitting curve of activated carbon

    图  8  砂和活性炭的渗流实验结果

    Figure  8.  Results of seepage experiments of sand and activated carbon

    图  9  不同质量比砂与有机膨润土混合材料渗流实验结果

    Figure  9.  Results of seepage experiments of sand mixed with organic bentonite with different mass ratios

    图  10  不同质量比砂与活性炭混合材料渗流实验结果

    Figure  10.  Results of seepage experiments of sand mixed with activated carbon with different mass ratios

    表  1  渗流实验所用材料参数

    Table  1.   Parameters of materials used in seepage experiments

    物料 粒级/mm 密度/(g·cm-3)
    -0.100 2.50
    有机膨润土 -0.075 2.00
    活性炭 1~2 1.25
    下载: 导出CSV

    表  2  活性炭吸附苯酚溶液一级动力学参数

    Table  2.   First-order kinetic parameters of activated carbon adsorption of phenol solution

    质量/g k/min-1 ζ1/(mg·L-1) ζ2/(mg·L-1)
    10 3.043×10-3 71.68 28.96
    20 4.105×10-3 82.14 19.22
    30 5.621×10-3 84.67 13.67
    下载: 导出CSV

    表  3  有机膨润土对苯酚的等温吸附实验结果

    Table  3.   Results of isothermal adsorption experiments of phenol by organic bentonite

    序号 原液浓度/(mg·L-1) 平衡浓度/(mg·L-1) 吸附量/(mg·g-1)
    1 5 1.49 0.05
    2 10 2.32 0.12
    3 20 4.18 0.24
    4 40 7.32 0.49
    5 60 12.06 0.72
    6 70 13.73 0.84
    7 100 17.83 1.23
    下载: 导出CSV

    表  4  有机膨润土对苯酚等温吸附模型拟合参数

    Table  4.   Parameters of fitting the isothermal adsorption model of phenol by organic bentonite

    等温吸附模型 公式 参数 R2
    线性 S=kdC kd=0.068 L/g 0.978 0
    Langmuir $S=\frac{S_{\max } k_{\mathrm{L}} C}{1+\mathrm{k}_{\mathrm{L}} C}$ Smax = -3.042 mg/g
    kL =- 0.017×10-3 L/mg
    0.993 0
    Freundlich S=kFCn kF = 0.040
    n = 1.207
    0.990 1
    注:kd为线性等温吸附分配系数;Smax为最大吸附容量;kL为Langmuir等温吸附常数;kF为Freundlich等温吸附常数;n为Freundlich等温吸附指数。
    下载: 导出CSV

    表  5  活性炭对苯酚的等温吸附实验结果

    Table  5.   Results of isothermal adsorption experiments of phenol by activated carbon

    序号 原液浓度/(mg·L-1) 平衡浓度/(mg·L-1) 吸附量/(mg·g-1)
    1 2 0.19 0.03
    2 8 0.50 0.12
    3 20 1.47 0.30
    4 45 2.43 0.64
    5 60 4.98 0.81
    6 85 6.43 1.17
    7 95 9.83 1.28
    8 105 10.20 1.44
    9 115 12.44 1.55
    10 125 15.04 1.64
    11 135 19.80 1.73
    12 145 24.51 1.78
    下载: 导出CSV

    表  6  活性炭对苯酚等温吸附模型拟合参数

    Table  6.   Parameters of fitting the isothermal adsorption model of phenol by activated carbon

    等温吸附模型 公式 参数 R2
    Langmuir $S=\frac{S_{\max } k_{\mathrm{L}} C}{1+k_{\mathrm{L}} C}$ Smax =2.440 mg/g
    kL =0.125 L/mg
    0.988 2
    Freundlich S=kFCn kF =0.393
    n =0.507
    0.954 6
    下载: 导出CSV

    表  7  砂与有机膨润土混合材料

    Table  7.   Mixed materials of sand and organic bentonite

    砂∶膨润土 混合材料孔隙率 装填量/g 渗透系数/(m·s-1)
    1∶1 0.29 301.12 2.624×10-6
    2∶1 0.38 273.07 1.908×10-5
    3∶1 0.47 238.00 3.468×10-5
    下载: 导出CSV

    表  8  砂与活性炭混合材料

    Table  8.   Mixed materials of sand and activated carbon

    砂∶活性炭 混合材料孔隙率 装填量/g 渗透系数/(m·s-1)
    1∶1 0.50 159.04 1.379×10-3
    2∶1 0.42 207.55 5.056×10-4
    3∶1 0.34 251.92 1.301×10-4
    下载: 导出CSV
  • [1] 赵明东, 董东林, 田康. 煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究[J]. 矿业科学学报, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41

    ZHAO Mingdong, DONG Donglin, TIAN Kang. Change mechanism simulation study of the overlying strata temperature field and fracture field in UCG[J]. Journal of Mining Science and Technology, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41
    [2] 刘淑琴, 畅志兵, 刘金昌. 深部煤炭原位气化开采关键技术及发展前景[J]. 矿业科学学报, 2021, 6(3): 261-270. doi: 10.19606/j.cnki.jmst.2021.03.002

    LIU Shuqin, CHANG Zhibing, LIU Jinchang. Key technologies and prospect for in-situ gasification mining of deep coal resources[J]. Journal of Mining Science and Technology, 2021, 6(3): 261-270. doi: 10.19606/j.cnki.jmst.2021.03.002
    [3] 张希, 冯悦峰, 李正斌, 等. 可渗透反应墙技术修复重金属污染地下水的发展与展望[J]. 离子交换与吸附, 2022, 38(3): 269-283. https://www.cnki.com.cn/Article/CJFDTOTAL-LJYX202203007.htm

    ZHANG Xi, FENG Yuefeng, LI Zhengbing, et al. Developmentand prospect of permeable reactive barrier for remediation of heavy metalcontaminated groundwater[J]. Ion Exchange and Adsorption, 2022, 38(3): 269-283. https://www.cnki.com.cn/Article/CJFDTOTAL-LJYX202203007.htm
    [4] 林达红, 徐文炘, 张静, 等. 不同介质材料组合可渗透反应墙渗透性能试验研究[J]. 矿产与地质, 2016, 30(2): 255-257. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201602020.htm

    LIN Dahong, XU Wenxin, ZHANG Jing, et al. Permeability test of permeable reaction barrier of different medium and material combinations[J]. Mineral Resources and Geology, 2016, 30(2): 255-257. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201602020.htm
    [5] ALKIZWINI R S. The use of an organo-kaolinite sorbent in a permeable reactive barrier for remediating groundwater contaminated with methylene blue dye: experimental and theoretical investigation[J]. Environmental Processes, 2021, 8(2): 889-910. doi: 10.1007/s40710-021-00515-1
    [6] HAIDER S A A, FATLAWI S A, NASIR M J. Utilizing activated carbon developed from banana peels as permeable reactive barrier in copper removal from polluted groundwater[J]. Journal of Ecological Engineering, 2022, 23(1): 83-90. doi: 10.12911/22998993/143973
    [7] FAISAL A A H, ABDUL-KAREEM M B, MOHAMMED A K, et al. Humic acid coated sand as a novel sorbent in permeable reactive barrier for environmental remediation of groundwater polluted with copper and cadmium ions[J]. Journal of Water Process Engineering, 2020, 36: 101373. doi: 10.1016/j.jwpe.2020.101373
    [8] ZENG Q, HUANG Y J, HUANG L M, et al. Efficient removal of hexavalent chromium in a wide pH range by composite of SiO2 supported nano ferrous oxalate[J]. Chemical Engineering Journal, 2020, 383: 123209. doi: 10.1016/j.cej.2019.123209
    [9] HUANG D D, WANG G C, SHI Z M, et al. Removal of hexavalent chromium in natural groundwater using activated carbon and cast iron combined system[J]. Journal of Cleaner Production, 2017, 165: 667-676. doi: 10.1016/j.jclepro.2017.07.152
    [10] YANG J, CAO L M, GUO R, et al. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2, 4-dichlorophenol in water[J]. Journal of Hazardous Materials, 2010, 184(1): 782-787.
    [11] 徐建平, 万海洮. 利用活性炭处理酸性矿井废水研究[J]. 水处理技术, 2014, 40(3): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ201403017.htm

    XU Jianping, WAN Haitao. Study on the treatment of acid mine wastewater by activated carbon[J]. Technology of water treatment, 2014, 40(3): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ201403017.htm
    [12] 彭利群, 张澄博, 李洪艺, 等. 介质材料在可渗透反应墙中的应用进展[J]. 环境科学与管理, 2011, 36(10): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ201110012.htm

    PENG Liqun, ZHANG Chengbo, LI Hongyi, et al. Application progress of reactive media materials in permeable reactive barrier[J]. Environmental Science and Management, 2011, 36(10): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ201110012.htm
    [13] LIU S Q, LI J G, MEI M, et al. Groundwater pollution from underground coal gasification[J]. Journal of China University of Mining and Technology, 2007, 17(4): 467-472. doi: 10.1016/S1006-1266(07)60127-8
    [14] KAPUSTA K, STANCZYK K, WIATOWSKI M, et al. Environmental aspects of a field-scale underground coal gasification trial in a shallow coal seam at the Experimental Mine Barbara in Poland[J]. Fuel, 2013, 113: 196-208. doi: 10.1016/j.fuel.2013.05.015
    [15] 张乐, 谌伦建, 邢宝林, 等. 烟煤地下气化半焦对模拟废水中苯酚的脱除[J]. 化工进展, 2015(10): 3790-3794. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201510043.htm

    ZHANG Le, CHEN Lunjian, XING Baolin, et al. Removal of phenol from simulated wastewater by underground coal gasification semi-coke[J]. Chemical Industry and Engineering Progress, 2015(10): 3790-3794. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201510043.htm
    [16] MOKHAHLANE L S, GOMO M, VERMEULEN D. Temperature and electrical conductivity stratification in the underground coal gasification zone and surrounding aquifers at the Majuba pilot plant[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2018, 118(10): 1053-1058.
    [17] BEAR J. Dynamics of fluids in porous media[M]. New York: Dover Publications, 1988.
    [18] 李敬杰, 蔡五田, 吕永高, 等. 中试尺度下连续式可渗透反应墙修复Cr(Ⅵ)污染地下水效果评估[J]. 环境工程, 2022, 40(2): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202202025.htm

    LI Jingjie, CAI Wutian, LÜ Yonggao, et al. Effective evaluation of Cr(Ⅵ)contaminated groundwater remediation by permeable reactive wall in pilot scale[J]. Environmental Engineering, 2022, 40(2): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202202025.htm
    [19] 刁文钦, 宋健, 王琳, 等. 利用生物渗透性反应墙修复地下水Cr(Ⅵ)污染的数值模拟[J]. 中国环境科学, 2022, 42(7): 3234-3243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202207027.htm

    DIAO Wenqin, SONG Jian, WANG Lin, et al. Numerical simulation of groundwater remediation of hexavalent chromium contaminated site by the bio-permeable reactive barrier[J]. China Environmental Science, 2022, 42(7): 3234-3243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202207027.htm
    [20] 罗兴申, 郑凯旋, 许芳铭, 等. 数值模拟减压集流式可渗透反应墙技术修复地下水[J]. 中国环境科学, 2021, 41(12): 5728-5735. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202112029.htm

    LUO Xingshen, ZHENG Kaixuan, XU Fangming, et al. Numerical simulation for remediation of polluted ground water by a novel convergent flow permeable reactive barrier[J]. China Environmental Science, 2021, 41(12): 5728-5735. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202112029.htm
    [21] NAFTZ D L, MORRISON S J, DAVIS J A, et al. Handbook of groundwater remediation using permeable reactive barriers[M]. Amsterdam: Elsevier, 2003.
    [22] 詹良通, 丁兆华, 谢世平, 等. 竖向阻隔墙中土工复合膨润土防水毯搭接区渗透系数测试与分析[J]. 岩土力学, 2021, 42(9): 2387-2394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109006.htm

    ZHAN Liangtong, DING Zhaohua, XIE Shiping, et al. Test and analysis of hydraulic conductivity of geosynthetic clay liners overlap in vertical barrier wall[J]. Rock and Soil Mechanics, 2021, 42(9): 2387-2394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109006.htm
  • 加载中
图(10) / 表(8)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  12
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 修回日期:  2024-01-12
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回