王凡, 徐冰, 谌伦建, 等. 煤炭地下气化渗透反应墙构建材料的吸附和渗流特性研究[J]. 矿业科学学报, 2024, 9(2): 167-177. DOI: 10.19606/j.cnki.jmst.2024.02.004
引用本文: 王凡, 徐冰, 谌伦建, 等. 煤炭地下气化渗透反应墙构建材料的吸附和渗流特性研究[J]. 矿业科学学报, 2024, 9(2): 167-177. DOI: 10.19606/j.cnki.jmst.2024.02.004
WANG Fan, XV Bing, CHEN Lunjian, et al. Adsorption and seepage properties of permeable reaction barrier construction materials for underground coal gasification[J]. Journal of Mining Science and Technology, 2024, 9(2): 167-177. DOI: 10.19606/j.cnki.jmst.2024.02.004
Citation: WANG Fan, XV Bing, CHEN Lunjian, et al. Adsorption and seepage properties of permeable reaction barrier construction materials for underground coal gasification[J]. Journal of Mining Science and Technology, 2024, 9(2): 167-177. DOI: 10.19606/j.cnki.jmst.2024.02.004

煤炭地下气化渗透反应墙构建材料的吸附和渗流特性研究

Adsorption and seepage properties of permeable reaction barrier construction materials for underground coal gasification

  • 摘要: 煤炭地下气化(UCG)带来的地下水污染风险是限制其推广发展的主要问题之一。渗透反应墙(PRB)修复技术是地下水原位修复的主要研究热点,而PRB材料特性是影响其正常运行的关键。本文首先探究了砂、有机膨润土、活性炭对UCG特征有机污染物苯酚的吸附特性,在此基础上,采用自建的渗流实验系统研究了砂、有机膨润土、活性炭及其混合物的吸附和渗透特性对净化污染水的综合影响效果。结果表明:①有机膨润土对溶液中苯酚的吸附速率较快,可在10 min之内达到吸附平衡,但吸附容量较小(1.98 mg/g);活性炭对溶液中苯酚的吸附速率较慢,但吸附容量较大(2.22 mg/g)。②有机膨润土对苯酚的等温吸附可用Freundlich模型描述,模型参数kF = 0.040,n = 1.207;活性炭对苯酚的等温吸附可用Langmuir模型描述,模型参数Smax = 2.44 mg/g,kL = 0.125 L/mg。③砂和活性炭的渗透系数分别为1.006×10-3 m/s和4.761×10-2 m/s,砂与活性炭或有机膨润土混合可有效调节混合材料的渗透性,当砂与有机膨润土质量比由1∶1增大到3∶1时,其混合材料的渗透系数由2.624×10-6增大至3.468×10-5 m/s;而砂与活性炭质量比由1∶1增大到3∶1时,其混合材料的渗透系数由1.379×10-3减小至1.301×10-4 m/s。

     

    Abstract: Groundwater pollution induced by Underground Coal Gasification(UCG)seriously hinders its development.Permeable Reactive Barrier(PRB)remediation therefore stands out as a major research focus for in-situ groundwater remediation, where the characteristics of PRB material is crucial to their effective operation.This study thus examines the adsorption properties of sand, organic bentonite, and activated carbon on phenol, a characteristic organic pollutant associated with UCG.A self-constructed permeation experimental system is employed to study the adsorption and permeation characteristics of sand, organic bentonite, activated carbon, mixtures of sand and organic bentonite, as well as sand and activated carbon to investigate their comprehensive impact in purifying contaminated water.The results indicate that: ①Organic bentonite exhibits a rapid adsorption rate for phenol in solution, reaching adsorption equilibrium within 10 minutes, despite a relatively low adsorption capacity(1.98 mg/g). Activated carbon, on the other hand, demonstrates a slower adsorption rate yet a higher adsorption capacity(2.22 mg/g).②The adsorption of phenol by organic bentonite conforms to the Freundlich isotherm model, with parameters kF = 0.040 and n = 1.207.Activated carbon follows the Langmuir isotherm model, with parameters Smax = 2.44 mg/g and kL= 0.125 L/mg.③The permeability coefficients of sand and activated carbon are 1.006×10-3 m/s and 4.761×10-2 m/s, respectively.The mixture of sand with activated carbon or organic bentonite could effectively moderate the permeability of the mixed material.When the mass ratio of sand to organic bentonite increases from 1∶1 to 3∶1, the permeability coefficient of the mixed material increases from 2.624×10-6 to 3.468×10-5 m/s.Conversely, when the ratio of sand to activated carbon increases from 1∶1 to 3∶1, the permeability coefficient of the mixed material decreases from 1.379×10-3 to 1.301×10-4 m/s.

     

/

返回文章
返回