留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深部煤层地下气化选址研究——以东胜气田J148地区为例

王锦昌 刘刚 张辉 翁新龙 马超 张茹

王锦昌, 刘刚, 张辉, 翁新龙, 马超, 张茹. 深部煤层地下气化选址研究——以东胜气田J148地区为例[J]. 矿业科学学报, 2024, 9(2): 156-166. doi: 10.19606/j.cnki.jmst.2024.02.003
引用本文: 王锦昌, 刘刚, 张辉, 翁新龙, 马超, 张茹. 深部煤层地下气化选址研究——以东胜气田J148地区为例[J]. 矿业科学学报, 2024, 9(2): 156-166. doi: 10.19606/j.cnki.jmst.2024.02.003
WANG Jinchang, LIU Gang, ZHANG Hui, WENG Xinlong, MA Chao, ZHANG Ru. Study on site selection of underground gasification in deep coal seam: a case study of J148 area in Dongsheng Gas Field[J]. Journal of Mining Science and Technology, 2024, 9(2): 156-166. doi: 10.19606/j.cnki.jmst.2024.02.003
Citation: WANG Jinchang, LIU Gang, ZHANG Hui, WENG Xinlong, MA Chao, ZHANG Ru. Study on site selection of underground gasification in deep coal seam: a case study of J148 area in Dongsheng Gas Field[J]. Journal of Mining Science and Technology, 2024, 9(2): 156-166. doi: 10.19606/j.cnki.jmst.2024.02.003

深部煤层地下气化选址研究——以东胜气田J148地区为例

doi: 10.19606/j.cnki.jmst.2024.02.003
详细信息
    作者简介:

    王锦昌(1984—),男,河南周口人,博士研究生,副研究员,主要从事油气田开发钻采工程工艺技术研究工作。E-mail:wangjinchang@vip.qq.com

  • 中图分类号: TD844

Study on site selection of underground gasification in deep coal seam: a case study of J148 area in Dongsheng Gas Field

  • 摘要: 从地质构造、水文地质、煤层气化适用性等角度,系统研究了东胜气田J148地区中生界侏罗系中下统延安组延9煤层地下气化的可行性,并探讨了利用深部煤层气化燃空区孔隙层、含水层及该区致密气层进行碳封存的前景。研究结果表明,该区延9煤层埋深1 264~1 285 m、倾角小于1°,煤层稳定性好。气化目标选区内地层断层、节理裂隙不发育,偶有裂隙但断面新鲜、闭合,煤层气化后空腔有较好的密闭性,对煤炭地下气化影响小,有利于气化炉的建设和扩展,可满足规模化煤炭地下气化项目实施。延9煤层顶底板存在连续的隔水层,能阻截地下水对煤层直接充水,有利于地下气化炉布置;顶板隔水层厚度小于导水裂隙带高度,存在垮落导通顶板含水层间接充水的风险,但顶板含水层属弱富水含水层,涌水量小,风险可控;底板隔水层厚度大于隔水层的安全厚度,能有效阻截煤层底板含水层对煤层直接充水的风险。总体而言,延9煤层厚度适中、夹矸少,属低灰、低硫、高热值不黏煤,煤焦反应活性高,具有良好开发前景。针对深部煤层规模化气化开采产生大量的CO2排放,初步探讨了利用煤层燃空区、顶底板含水层和下部致密天然气层进行CO2安全封存可行性。分析认为,在延9煤层气化燃空区孔隙层和顶底板含水层中,可封存煤层气化产生的CO2的60.8 % ~88.2 %;若结合东胜气田上古生界致密天然气开发,用煤气化产生CO2进行天然气驱替与封存,有望实现深部煤层气化开采过程近零碳排放。
  • 图  1  区域地貌示意图

    Figure  1.  Schematic diagram of regional geomorphology

    图  2  J148地区构造略图

    Figure  2.  Structural sketch of Jin 148 area

    图  3  渠S1井延9煤层及顶底板结构

    Figure  3.  Structure diagram of coal seam and roof and floor in Ququ S1 well Yan 9

    图  4  延9煤层顶底板含(隔)水系统分布

    Figure  4.  Distribution of water-containing system on the top and bottom of Yan9 coal seam

    图  5  J148井区可气化煤炭资源分布

    Figure  5.  Distribution of gasified coal resources in Jin 148 well area

    表  1  延9煤层煤质分析数据

    取样位置 水分Mad/% 灰分Ad/% 挥发分Vd/% Cd/% Hd/% St.d/% 发热量Qnet,d/(MJ/kg-1)
    煤层上部 2.99 9.65 34.19 74.02 4.54 0.29 28.57
    煤层下部 4.01 16.61 34.57 65.02 3.54 0.35 24.31
    下载: 导出CSV

    表  2  延9煤焦反应活性

    温度/℃ 850 950 1 050 1 100
    反应活性/% 14.1 31.9 63 80.1
    下载: 导出CSV
  • [1] 鄂尔多斯市人民政府. 鄂尔多斯投资指南—资源优势[EB/OL](2023.2.24). http://www.ordos.gov.cn/sq_127930/zsys/tzzn/202302/t20230224_3343676.html.
    [2] 鄂尔多斯市能源局. 关于在鄂尔多斯市建设自治区(国家)级"能源博物馆"提案的答复[EB/OL]. (2023.1.16). http://nyj.ordos.gov.cn/xxgk1/fdzdgk/jytabl1/zxta/202301/t20230116_3328964.html.
    [3] 秦勇, 易同生, 杨磊, 等. 中国煤炭地下气化现场试验探索历程与前景展望[J]. 煤田地质与勘探, 2023, 51(7): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202307002.htm

    QIN Yong, YI Tongsheng, YANG Lei, et al. Underground coal gasification field tests in China: history and prospects[J]. Coal Geology & Exploration, 2023, 51(7): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202307002.htm
    [4] 刘淑琴, 畅志兵, 刘金昌. 深部煤炭原位气化开采关键技术及发展前景[J]. 矿业科学学报, 2021, 6(3): 261-270. doi: 10.19606/j.cnki.jmst.2021.03.002

    LIU Shuqin, CHANG Zhibing, LIU Jinchang. Key technologies and prospect for in situ gasification mining of deep coal resources[J]. Journal of Mining Science and Technology, 2021, 6(3): 261-270. doi: 10.19606/j.cnki.jmst.2021.03.002
    [5] 薛会, 张金川, 王毅, 等. 鄂北杭锦旗探区构造演化与油气关系[J]. 大地构造与成矿学, 2009, 33(2): 206-214. doi: 10.3969/j.issn.1001-1552.2009.02.003

    XUE Hui, ZHANG Jinchuan, WANG Yi, et al. Relationship between tectonic evolution and hydrocarbon in Hangjinqi Block of North Ordos Basin[J]. Geotectonica et Metallogenia, 2009, 33(2): 206-214. doi: 10.3969/j.issn.1001-1552.2009.02.003
    [6] 徐恒艺. 鄂尔多斯盆地北部杭锦旗地区中生代构造特征与构造演化研究[D]. 北京: 中国石油大学(北京), 2018.

    XV Hengyi. Mesozoic structural characteristics and evolution in Hangjinqi Block, northern Ordos Basin[D]. Beijing: China University of Petroleum (Beijing), 2018.
    [7] 刘海燕. 鄂尔多斯盆地北部杭锦旗地区地质构造特征及其铀成矿意义[D]. 西安: 西北大学, 2014.

    LIU Haiyan. Geological structural characteristics of Hangjinqi area in northern Ordos Basin and its uranium mineralization significance[D]. Xi'an: Northwest University, 2014.
    [8] 陈谋. 鄂尔多斯盆地北部上古生界断裂对油气成藏条件的影响[D]. 东营: 中国石油大学(华东), 2019.

    CHEN Mou. Influence of upper Paleozoic faults on hydrocarbon accumulation conditions in northern Ordos Basin[D]. Dongying: China University of Petroleum (Huadong), 2019.
    [9] 常兴浩, 孙晓, 杨明慧. 鄂尔多斯盆地杭锦旗地区构造单元划分新方案及地质意义[J]. 科学技术与工程, 2013, 13(30): 8892-8899. doi: 10.3969/j.issn.1671-1815.2013.30.006

    CHANG Xinghao, SUN Xiao, YANG Minghui. Dicussing on division scheme of sub-tectonic units in Hangjinqi area, Ordos basin and the geological significance[J]. Science Technology and Engineering, 2013, 13(30): 8892-8899. doi: 10.3969/j.issn.1671-1815.2013.30.006
    [10] 贾超, 刘禧超, 郭维. 内蒙古鄂尔多斯地区延安组沉积环境分析[J]. 西部资源, 2021(5): 1-2, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY202105001.htm

    JIA Chao, LIU Xichao, GUO Wei. Analysis of sedimentary environment of Yan'an formationin Ordos region, inner Mongolia[J]. Western Resources, 2021(5): 1-2, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY202105001.htm
    [11] 张雪映, 剡鹏兵, 王贵. 鄂尔多斯盆地北部延安组沉积学特征与成矿潜力分析[J]. 铀矿地质, 2021, 37(2): 171-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202102004.htm

    ZHANG Xueying, YAN Pengbing, WANG Gui. Sedimentary characteristics and metallogenicpotential of Yan'an formation in the north of Ordos Basin[J]. Uranium Geology, 2021, 37(2): 171-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202102004.htm
    [12] 王东东. 鄂尔多斯盆地中侏罗世延安组层序—古地理与聚煤规律[D]. 北京: 中国矿业大学(北京), 2012.

    WANG Dongdong. Sequence-palaeogeography andcoal-accumulation of the Middle Jurassic Yan'an formation in Ordos Basin[D]. Beijing: China University of Mining & Technology-Beijing, 2012.
    [13] 晋香兰, 张泓. 鄂尔多斯盆地侏罗系成煤系统[J]. 煤炭学报, 2014, 39(S1): 191-197. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2014S1033.htm

    JIN Xianglan, ZHANG Hong. Jurassic coal-forming system in Ordos Basin[J]. Journal of China Coal Society, 2014, 39(S1): 191-197. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2014S1033.htm
    [14] 肖秀玲. 鄂尔多斯盆地侏罗纪煤岩特征研究[D]. 北京: 中国地质大学(北京), 2010.

    XIAO Xiuling. Study on the Characteristics of Jurassic Coal in Ordos Basin[D]. Beijing: China University of Geosciences(Beijing), 2010.
    [15] 李文厚. 鄂尔多斯盆地侏罗系沉积体系和层序地层学研究[D]. 西安: 西北大学, 2007.

    LI Wenhou. Research on Sedimentary System and Squence Stratigraphy of the Jurassic in Ordos Basin[D]. Xi'an: Northwest Univerity, 2007.
    [16] 董洁. 鄂尔多斯盆地侏罗系延安组聚煤规律与煤层气富集规律[D]. 青岛: 中国石油大学(华东), 2010.

    DONG Jie. The rule of the coal accumulation and coal-bed methane accumulation in Jurassic Yan'an formation of Ordos Basin[D]. Qingdao: China University of Petroleum (East China), 2010.
    [17] 焦养泉, 王双明, 范立民, 等. 鄂尔多斯盆地侏罗纪含煤岩系地下水系统关键要素与格架模型[J]. 煤炭学报, 2020, 45(7): 2411-2422. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007009.htm

    JIAO Yangquan, WANG Shuangming, FAN Limin, et al. Key elements and framework model of groundwater system in Jurassic coal measures of Ordos Basin[J]. Journal of China Coal Society, 2020, 45(7): 2411-2422. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007009.htm
    [18] 张金华, 陈艳鹏, 张梦媛, 等. 水文地质条件与煤炭地下气化的相互影响[J]. 煤炭工程, 2021, 53(12): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202112028.htm

    ZHANG Jinhua, CHEN Yanpeng, ZHANG Mengyuan, et al. Interaction between hydrogeological conditions and underground coal gasification[J]. Coal Engineering, 2021, 53(12): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202112028.htm
    [19] 刘淑琴, 师素珍, 冯国旭, 等. 煤炭地下气化地质选址原则与案例评价[J]. 煤炭学报, 2019, 44(8): 2531-2538. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908028.htm

    LIU Shuqin, SHI Suzhen, FENG Guoxu, et al. Geological site selection and evaluation for underground coal gasification[J]. Journal of China Coal Society, 2019, 44(8): 2531-2538. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908028.htm
    [20] 孙蕊, 马高峰, 马国帅, 等. 贫瘦煤模拟海水催化热解特性的研究[J]. 矿业科学学报, 2020, 5(1): 115-121. http://kykxxb.cumtb.edu.cn/article/id/271

    SUN Rui, Ma Gaofeng, Ma Guoshuai, et al. Catalytic pyrolysis characteristics of simulated seawater in lean coal[J]. Journal of Mining Science and Technology, 2020, 5(1): 115-121. http://kykxxb.cumtb.edu.cn/article/id/271
    [21] 赵明东, 董东林, 田康. 煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究[J]. 矿业科学学报, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41

    ZHAO Mingdong, DONG Donglin, TIAN Kang. Change mechanism simulation study of the overlying strata temperature field and fracture field in UCG[J]. Journal of Mining Science and Technology, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41
    [22] 王兴刚, 范谭广, 焦立新, 等. 三塘湖盆地煤炭地下气化地质评价与有利区域[J]. 新疆石油地质, 2023, 44(3): 307-313. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202303006.htm

    WANG Xinggang, FAN Tanguang, JIAO Lixin, et al. Geological evaluation and favorable areas of underground coal gasification in santanghu basin[J]. Xinjiang Petroleum Geology, 2023, 44(3): 307-313. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202303006.htm
    [23] 崔振东, 乔群, 刘大安, 等. CO2地质封存盖层岩石物性封闭能力评价[J], 工程地质学报, 2017, 25: 428-433. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201710001066.htm

    CUI Zhengdong, Qiao Qun, Liu Daan, et al. Evaluation On The Physical Sealing Capacity Of Caprocks In CO2 Sequestration Sites. [J]. Journal of Engineering Geology. 2017, 25: 428-433. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201710001066.htm
    [24] 李天, 任大忠, 甯波, 等. 煤层孔隙结构多尺度联合表征及其对可动流体的影响[J]. 矿业科学学报, 2023, 8(4): 569-582. doi: 10.19606/j.cnki.jmst.2023.04.013

    LI Tian, REN Dazhong, NING Bo, et al. Multi-scale joint characterization of coal seam pore structure and its influence on movable fluid[J]. Journal of Mining Science and Technology, 2023, 8(4): 569-582. doi: 10.19606/j.cnki.jmst.2023.04.013
    [25] 沈平平, 廖新维. 二氧化碳地质埋存与提高石油采收率技术[M]. 北京: 石油工业出版社, 2009.

    SHEN Pingping, LIAO Xinwei. Technology of carbon dioxide stored in geological media and enhanced oil recovery[M]. Beijing: Petroleum Industry Press, 2009.
    [26] 沈平平. 油藏流体的PVT与相态[M]. 北京: 石油工业出版社, 2000.

    SHEN Pingping. PVT and phase behaviour of petroleum reservoir fluids[M]. Beijing: Petroleum Industry Press, 2000.
    [27] OLDENBURG C M, PRUESS K, BENSON S M. Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery[J]. Energy & Fuels, 2001, 15(2): 293-298.
    [28] TURTA A T, SIM S S K, SINGHAL A K, et al. Basic investigations on enhanced gas recovery by gas-gas displacement[J]. Journal of Canadian Petroleum Technology, 2008, 47(10): 39-44.
    [29] 史云清, 贾英, 严谨, 等. 大牛地致密低渗气藏注CO2选区及数值模拟研究[C]. 2016年全国天然气学术年会论文集, 石油天然气工业. 银川: 中国石油学会天然气专业委员会, 2016: 569-581.

    SHI Yunqing, JIA Ying, YAN Jin, et al. Research on CO2 injection area selection and numerical simulation of tight low permeability gas reservoir in Daniudi[C]. Proceedings of 2016 National Natural Gas Academic Annual Conference, Oil and Gas Industry. Yinchuan: Natural Gas Committee of China Petroleum Society, 2016: 569-581.
    [30] 史云清, 贾英, 潘伟义, 等. 低渗致密气藏注超临界CO2驱替机理[J]. 石油与天然气地质, 2017, 38(3): 610-616. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703021.htm

    SHI Yunqing, JIA Ying, PAN Weiyi, et al. Mechanism of supercritical CO2 flooding in low-permeability tight gas reservoirs[J]. Oil & Gas Geology, 2017, 38(3): 610-616. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703021.htm
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  13
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-17
  • 修回日期:  2024-01-20
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回