留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

添加二氧化硅的煤石墨化高温高压模拟实验

陈高健 曹代勇 王安民 魏迎春 刘志飞 赵萌

陈高健, 曹代勇, 王安民, 魏迎春, 刘志飞, 赵萌. 添加二氧化硅的煤石墨化高温高压模拟实验[J]. 矿业科学学报, 2024, 9(2): 144-155. doi: 10.19606/j.cnki.jmst.2024.02.002
引用本文: 陈高健, 曹代勇, 王安民, 魏迎春, 刘志飞, 赵萌. 添加二氧化硅的煤石墨化高温高压模拟实验[J]. 矿业科学学报, 2024, 9(2): 144-155. doi: 10.19606/j.cnki.jmst.2024.02.002
CHEN Gaojian, CAO Daiyong, WANG Anmin, WEI Yingchun, LIU Zhifei, ZHAO Meng. High-temperature and high-pressure simulation of coal graphitization with SiO2 additive[J]. Journal of Mining Science and Technology, 2024, 9(2): 144-155. doi: 10.19606/j.cnki.jmst.2024.02.002
Citation: CHEN Gaojian, CAO Daiyong, WANG Anmin, WEI Yingchun, LIU Zhifei, ZHAO Meng. High-temperature and high-pressure simulation of coal graphitization with SiO2 additive[J]. Journal of Mining Science and Technology, 2024, 9(2): 144-155. doi: 10.19606/j.cnki.jmst.2024.02.002

添加二氧化硅的煤石墨化高温高压模拟实验

doi: 10.19606/j.cnki.jmst.2024.02.002
基金项目: 

国家自然科学基金 42072197

国家自然科学基金 41902170

国家自然科学基金 41772156

详细信息
    作者简介:

    陈高健(1998—),男,黑龙江哈尔滨人,硕士研究生,主要从事煤与煤系石墨方面的研究工作。E-mail:1092876607@qq.com

    通讯作者:

    曹代勇(1955—),男,重庆人,博士,教授,主要从事煤与煤系石墨方面的教学和科研工作。E-mail:cdy@cumtb.edu.cn

  • 中图分类号: P62

High-temperature and high-pressure simulation of coal graphitization with SiO2 additive

  • 摘要: 为研究自然条件下二氧化硅矿物对煤石墨化作用的影响,将二氧化硅添加剂与分选后的煤中镜质组(来自中国西南部贵州省格目底矿区)充分混合后,开展实验条件为600~1 200 ℃、1.5~2.0 GPa的高温高压模拟实验,对煤系石墨形成环境进行反演。通过X射线衍射、拉曼光谱和高分辨率透射电镜对石墨化产物进行分析,研究二氧化硅对煤的石墨化过程的影响。研究发现,二氧化硅在高温高压环境下存在阻碍石墨化作用的效果,抑制煤石墨化程度的增长。这一结果可为自然条件下构造强烈地区煤石墨化程度较低的现象提供一种解释。
  • 图  1  高温高压实验设备——六面顶压机

    Figure  1.  High-temperature and high-pressure experimental equipment (six-sided press)

    图  2  二次酸洗脱矿实验样品XRD结果对比

    Figure  2.  Comparative XRD patterns of secondary acid-washed and demineralized experimental samples

    图  3  模拟实验样品XRD图

    Figure  3.  XRD patterns of the experimental samples

    图  4  模拟实验样品拉曼光谱

    Figure  4.  Raman spectra of the experimental samples

    图  5  600~900 ℃条件下G、GS样品的HRTEM特征

    Figure  5.  High-resolution transmission electron microscopic images of G/GS at 600~900 ℃

    图  6  1 200 ℃条件下G/GS样品的HRTEM特征

    Figure  6.  High-resolution transmission electron microscopic images of G/GS at 1 200 ℃

    图  7  GS样品d002随温压变化柱状图

    Figure  7.  The d002 parameters of G and GS samples with temperature and pressure

    图  8  Δd002值随温压变化柱状图

    Figure  8.  The Δd002 parameters with temperature and pressure

    图  9  G、GS样品微晶结构参数(LaLc)

    Figure  9.  Microcrystalline structure parameters (La, Lc) of G and GS samples

    图  10  G、GS样品拉曼参数随温压变化柱状图

    Figure  10.  Raman parameters with temperature and pressure of G and GS samples

    图  11  d002-R2/R3关系图

    Figure  11.  Relationship between d002-R2 and R3

    图  12  SiO2抑制石墨化作用机理

    Figure  12.  Mechanism of graphitization inhibition by SiO2

    表  1  格目底镜质组的工业分析及元素分析数据

    Table  1.   Industrial and elemental analyses data of vitrinite in Gemudi %

    采集地 Ro,max 显微组分体积分数 工业分析 元素分析
    镜质组 惰质组 壳质组 Mad Ad Vdaf FCdaf Cdaf Hdaf Ndaf Odaf
    贵州格目底 1.7 92.4 7.6 0 0.72 5.72 17.03 78.22 90.88 3.98 1.88 2.38
    下载: 导出CSV

    表  2  高温高压模拟实验方案

    Table  2.   Scheme of high-temperature and high-pressure simulation experiment

    样品编号 实验条件
    无添加剂 添加SiO2 温度/℃ 压力/GPa
    G-1 GS-1 600 1.5
    G-2 GS-2 900 1.5
    G-3 GS-3 2.0
    G-4 GS-4 1 200 1.5
    G-5 GS-5 2.0
    下载: 导出CSV

    表  3  模拟实验样品XRD参数

    Table  3.   XRD parameters of the experimental samples

    编号 温度/℃ 压力/GPa 2θ002/(°) Lc/nm La/nm d002/nm
    GS-1 600 1.5 25.603 2.08 3.32 0.347 7
    G-1 25.663 2.36 2.74 0.346 9
    GS-2 900 1.5 25.842 2.27 4.85 0.344 5
    G-2 26.079 3.05 8.03 0.341 4
    GS-3 2 25.955 2.32 6.40 0.343 7
    G-3 25.966 2.61 9.65 0.342 9
    GS-4 1 200 1.5 26.130 9.98 14.48 0.340 7
    G-4 26.291 17.23 54.01 0.338 7
    GS-5 2 26.278 10.15 15.86 0.338 9
    G-5 26.327 18.78 50.70 0.338 2
    下载: 导出CSV

    表  4  实验样品拉曼参数

    Table  4.   Raman parameters of the experimental samples

    编号 温度/℃ 压力/GPa FWHM(G) R1 R2 R3
    GS-1 600 1.5 63.06 1.39 0.411 0.868
    G-1 59.21 0.69 0.408 0.866
    GS-2 900 1.5 32.80 2.77 0.75 0.842
    G-2 38.19 2.48 0.698 0.761
    GS-3 2 40.80 1.96 0.710 0.800
    G-3 40.00 2.14 0.686 0.768
    GS-4 1 200 1.5 31.44 0.93 0.598 0.639
    G-4 21.07 0.58 0.461 0.503
    GS-5 2 26.89 0.66 0.514 0.547
    G-5 20.75 0.46 0.429 0.454
    下载: 导出CSV
  • [1] 莫如爵, 刘绍斌, 黄翠荣, 等. 中国石墨矿床地质[M]. 北京: 中国建筑工业出版社, 1989: 1-290.

    MO Rujue, LIU Shaobin, HUANG Cuirong, et al. Geology of graphite deposits in China[M]. Beijing: China Architecture & Building Press, 1989: 1-290.
    [2] 曹代勇, 秦国红, 张岩, 等. 含煤岩系矿产资源类型划分及组合关系探讨[J]. 煤炭学报, 2016, 41(9): 2150-2155. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609002.htm

    CAO Daiyong, QIN Guohong, ZHANG Yan, et al. Classification and combination relationship of mineral resources in coal measures[J]. Journal of China Coal Society, 2016, 41(9): 2150-2155. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609002.htm
    [3] 曹代勇, 张鹤, 董业绩, 等. 煤系石墨矿产地质研究现状与重点方向[J]. 地学前缘, 2017, 24(5): 317-327. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201705033.htm

    CAO Daiyong, ZHANG He, DONG Yeji, et al. Research status and key orientation of coal-based graphite mineral geology[J]. Earth Science Frontiers, 2017, 24(5): 317-327. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201705033.htm
    [4] 王路, 董业绩, 张鹤, 等. 煤成石墨化作用的影响因素及其实验验证[J]. 矿业科学学报, 2018, 3(1): 9-19. http://kykxxb.cumtb.edu.cn/article/id/116

    WANG Lu, DONG Yeji, ZHANG He, et al. Factors affecting graphitization of coal and the experimental validation[J]. Journal of Mining Science and Technology, 2018, 3(1): 9-19. http://kykxxb.cumtb.edu.cn/article/id/116
    [5] FRANKLIN R E. Crystallite growth in graphitizing and non-graphitizing carbons[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1951, 209(1097): 196-218.
    [6] GONZÁLEZ D, MONTES-MORÁN M A, GARCIA A B. Graphite materials prepared from an anthracite: a structural characterization[J]. Energy & Fuels, 2003, 17(5): 1324-1329.
    [7] BEYSSAC O, GOFFÉ B, PETITET J P, et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2267-2276. doi: 10.1016/S1386-1425(03)00070-2
    [8] WILKS K R, MASTALERZ M, ROSS J V, et al. The effect of experimental deformation on the graphitization of Pennsylvania anthracite[J]. International Journal of Coal Geology, 1993, 24(1/2/3/4): 347-369.
    [9] BUSTIN R M, ROSS J V, ROUZAUD J N. Mechanisms of graphite formation from kerogen: experimental evidence[J]. International Journal of Coal Geology, 1995, 28(1): 1-36. doi: 10.1016/0166-5162(95)00002-U
    [10] 王路. 煤系石墨的构造-热成矿机制研究[D]. 北京: 中国矿业大学(北京), 2020: 19-36.

    WANG Lu. Study on the tectonic-thermal metallogenic mechanism of the coal-based graphite[D]. Beijing: China University of Mining & Technology, Beijing, 2020: 19-36.
    [11] INAGAKI M, HIRANO S, SAITO H. Accelerating effect of coexisting calcium compounds on graphitization under pressure[J]. Carbon, 1969, 7(6): 722.
    [12] FITZER E, WEISENBURGER S. Evidence of catalytic effect of sulphur on graphitization between 1 400 and 2 000 ℃[J]. Carbon, 1976, 14(4): 195-198. doi: 10.1016/0008-6223(76)90106-8
    [13] GONZÁLEZ D, MONTES-MORÁN M A, GARCIA A B. Influence of inherent coal mineral matter on the structural characteristics of graphite materials prepared from anthracites[J]. Energy & Fuels, 2005, 19(1): 263-269.
    [14] HERITIANA A R, RIVA R, RALAY R, et al. Evaluation of flake graphite ore using self-potential (SP), electrical resistivity tomography (ERT) and induced polarization (IP) methods in east coast of Madagascar[J]. Journal of Applied Geophysics, 2019, 169: 134-141. doi: 10.1016/j.jappgeo.2019.07.001
    [15] NYATHI M S, CLIFFORD C B, SCHOBERT H H. Characterization of graphitic materials prepared from different rank Pennsylvania anthracites[J]. Fuel, 2013, 114: 244-250. doi: 10.1016/j.fuel.2012.04.003
    [16] 代世峰, 任德贻, 唐跃刚. 煤中常量元素的赋存特征与研究意义[J]. 煤田地质与勘探, 2005, 33(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200502000.htm

    DAI Shifeng, REN Deyi, TANG Yuegang. Modes of occurrence of major elements in coal and their study significance[J]. Coal Geology & Exploration, 2005, 33(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200502000.htm
    [17] PAPPANO P J, SCHOBERT H H. Effect of natural mineral inclusions on the graphitizability of a Pennsylvania anthracite[J]. Energy & Fuels, 2009, 23(1): 422-428.
    [18] 邱钿. 煤的石墨化过程及煤系矿物变迁规律研究[D]. 徐州: 中国矿业大学, 2019: 87-103.

    QIU Tian. Research on the graphitization process of coal and the migration rule of coal-derived minerals[D]. Xuzhou: China University of Mining and Technology, 2019: 87-103.
    [19] CHEN G J, CAO D Y, WANG A M, et al. A high-temperature thermal simulation experiment for coal graphitization with the addition of SiO2[J]. Minerals, 2022, 12(10): 1239. doi: 10.3390/min12101239
    [20] 曹代勇, 王路, 刘志飞, 等. 我国煤系石墨研究及资源开发利用前景[J]. 煤田地质与勘探, 2020, 48(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202001001.htm

    CAO Daiyong, WANG Lu, LIU Zhifei, et al. The research status and prospect of coal-based graphite in China[J]. Coal Geology & Exploration, 2020, 48(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202001001.htm
    [21] WANG L, CAO D Y, PENG Y W, et al. Strain-induced graphitization mechanism of coal-based graphite from luting, Hunan province, China[J]. Minerals, 2019, 9(10): 617. doi: 10.3390/min9100617
    [22] WANG L, QIN R F, LI Y, et al. On the difference of graphitization behavior between vitrinite-and inertinite-rich anthracites during heat treatment[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(2): 4991-5003. doi: 10.1080/15567036.2019.1656681
    [23] JORJANI E, CHAPI H G, KHORAMI M T. Ultra clean coal production by microwave irradiation pretreatment and sequential leaching with HF followed by HNO3[J]. Fuel Processing Technology, 2011, 92(10): 1898-1904. doi: 10.1016/j.fuproc.2011.05.008
    [24] 姜波, 秦勇, 金法礼. 煤变形的高温高压实验研究[J]. 煤炭学报, 1997, 22(1): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB701.016.htm

    JIANG Bo, QIN Yong, JIN Fali. Coal deformation test under high temperature and confining pressure[J]. Journal of China Coal Society, 1997, 22(1): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB701.016.htm
    [25] 于昭仪, 谢卫宁, 邱钿, 等. 添加剂对煤基石墨微观结构的影响[J]. 煤炭科学技术, 2023, 51(5): 302-308. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202305030.htm

    YU Zhaoyi, XIE Weining, QIU Tian, et al. Effect of additives on microstructure of coal-based graphite[J]. Coal Science and Technology, 2023, 51(5): 302-308. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202305030.htm
    [26] LU L, SAHAJWALLA V, KONG C, et al. Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon, 2001, 39(12): 1821-1833. doi: 10.1016/S0008-6223(00)00318-3
    [27] LI K, RIMMER S M, LIU Q F. Geochemical and petrographic analysis of graphitized coals from central Hunan, China[J]. International Journal of Coal Geology, 2018, 195: 267-279. doi: 10.1016/j.coal.2018.06.009
    [28] WANG A M, LI J, WEI Y C, et al. Gas migration for terrestrial gas hydrates in the Juhugeng mining area of Muli Basin, Qilian Mountains, Northwest China[J]. Energy Exploration & Exploitation, 2020, 38(4): 989-1013.
    [29] 李焕同, 曹代勇, 邹晓艳, 等. 不同堆砌层数煤系石墨的拉曼光谱表征及其表面石墨化均匀程度[J]. 光谱学与光谱分析, 2022, 42(8): 2616-2623. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202208048.htm

    LI Huantong, CAO Daiyong, ZOU Xiaoyan, et al. Raman spectroscopic characterization and surface graphitization degree of coal-based graphite with the number of aromatic layers[J]. Spectroscopy and Spectral Analysis, 2022, 42(8): 2616-2623. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202208048.htm
    [30] BAYSAL M, YVRVM A, YlLDlZ B, et al. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction[J]. International Journal of Coal Geology, 2016, 163: 166-176. doi: 10.1016/j.coal.2016.07.009
    [31] WANG Y, SERRANO S, SANTIAGO-AVILÉS J J. Raman characterization of carbon nanofibers prepared using electrospinning[J]. Synthetic Metals, 2003, 138(3): 423-427. doi: 10.1016/S0379-6779(02)00472-1
    [32] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics, 1970, 53(3): 1126-1130. doi: 10.1063/1.1674108
    [33] RODRIGUES S, MARQUES M, SUÁREZ-RUIZ I, et al. Microstructural investigations of natural and synthetic graphites and semi-graphites[J]. International Journal of Coal Geology, 2013, 111: 67-79. doi: 10.1016/j.coal.2012.06.013
    [34] KWIECI SKA B, PETERSEN H I. Graphite, semi-graphite, natural coke, and natural char classification—ICCP system[J]. International Journal of Coal Geology, 2004, 57(2): 99-116. doi: 10.1016/j.coal.2003.09.003
    [35] RANTITSCH G, LÄMMERER W, FISSLTHALER E, et al. On the discrimination of semi-graphite and graphite by Raman spectroscopy[J]. International Journal of Coal Geology, 2016, 159: 48-56. doi: 10.1016/j.coal.2016.04.001
    [36] 相建华, 曾凡桂, 梁虎珍, 等. 不同变质程度煤的碳结构特征及其演化机制[J]. 煤炭学报, 2016, 41(6): 1498-1506. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201606024.htm

    XIANG Jianhua, ZENG Fangui, LIANG Huzhen, et al. Carbon structure characteristics and evolution mechanism of different rank coals[J]. Journal of China Coal Society, 2016, 41(6): 1498-1506. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201606024.htm
    [37] SHARMA S, SHYAM KUMAR C N, KORVINK J G, et al. Evolution of glassy carbon microstructure: in situ transmission electron microscopy of the pyrolysis process[J]. Scientific Reports, 2018, 8(1): 16282. doi: 10.1038/s41598-018-34644-9
    [38] LI K, LIU Q F, CHENG H F, et al. Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 249: 119286. doi: 10.1016/j.saa.2020.119286
    [39] 曹代勇, 魏迎春, 李阳, 等. 煤系石墨鉴别指标厘定及分类分级体系构建[J]. 煤炭学报, 2021, 46(6): 1833-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202106015.htm

    CAO Daiyong, WEI Yingchun, LI Yang, et al. Determination of identification index and construction of classification and classification system of coal measures graphite[J]. Journal of China Coal Society, 2021, 46(6): 1833-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202106015.htm
    [40] 秦勇. 再论煤中大分子基本结构单元演化的拼叠作用[J]. 地学前缘, 1999, 6(S1): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY1999S1007.htm

    QIN Yong. The study of furthermore discussion on the making-up of macro-molecular basic struciural units in coals[J]. Earth Science Frontiers, 1999, 6(S1): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY1999S1007.htm
    [41] 马翰明. 高温高压下纳米碳化硅的分解[D]. 长春: 吉林大学, 2019: 12-17.

    MA Hanming. Decomposition of carbon silicon nanomaterial under high pressure and high temperature[D]. Changchun: Jilin University, 2019: 12-17.
    [42] 刘志飞. 基于模拟实验的煤岩显微组分石墨化差异性机制研究[D]. 北京: 中国矿业大学(北京), 2021: 151-165.

    LIU Zhifei. The mechanism of graphitization difference of coal macerals based on simulation experiments[D]. Beijing: China University of Mining & Technology, Beijing, 2021: 151-165.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  17
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-20
  • 修回日期:  2023-12-05
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回