留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

井工煤矿全生命周期甲烷捕集核算及减排路径

原白云 岳宗耀 高保彬 李兵兵 贾天让

原白云, 岳宗耀, 高保彬, 李兵兵, 贾天让. 井工煤矿全生命周期甲烷捕集核算及减排路径[J]. 矿业科学学报, 2024, 9(1): 116-125. doi: 10.19606/j.cnki.jmst.2024.01.012
引用本文: 原白云, 岳宗耀, 高保彬, 李兵兵, 贾天让. 井工煤矿全生命周期甲烷捕集核算及减排路径[J]. 矿业科学学报, 2024, 9(1): 116-125. doi: 10.19606/j.cnki.jmst.2024.01.012
YUAN Baiyun, YUE Zongyao, GAO Baobin, LI Bingbing, JIA Tianrang. Capture accounting and emission reduction of methane in the whole life cycle of underground coal mine[J]. Journal of Mining Science and Technology, 2024, 9(1): 116-125. doi: 10.19606/j.cnki.jmst.2024.01.012
Citation: YUAN Baiyun, YUE Zongyao, GAO Baobin, LI Bingbing, JIA Tianrang. Capture accounting and emission reduction of methane in the whole life cycle of underground coal mine[J]. Journal of Mining Science and Technology, 2024, 9(1): 116-125. doi: 10.19606/j.cnki.jmst.2024.01.012

井工煤矿全生命周期甲烷捕集核算及减排路径

doi: 10.19606/j.cnki.jmst.2024.01.012
基金项目: 

河南省哲学社会科学规划 2020BJJ034

河南省教育厅人文社会科学研究 2021-ZZJH-130

河南省高等学校青年骨干教师培养计划 2020GGJS058

河南省高等学校哲学社会科学创新人才支持计划 2022-CXRC-28

详细信息
    作者简介:

    原白云(1983—),女,河南焦作人,博士,副教授,主要从事运营管理、低碳供应链管理、能源经济等方面的研究工作。E-mail:yuanbaiyun@hpu.edu.cn

  • 中图分类号: TD712; X752

Capture accounting and emission reduction of methane in the whole life cycle of underground coal mine

  • 摘要: 甲烷减排是我国碳减排目标的重要组成部分,建立甲烷捕集核算体系是实现甲烷减排的前提。以甲烷近零排放为目标,结合《国家温室气体清单指南:IPCC—2019》和煤炭企业温室气体排放核算国家标准,提出了井工煤矿全生命周期中地质勘探、煤炭开采、矿后活动和煤矿废弃各阶段甲烷捕集的具体核算方法,构建了井工煤矿全生命周期甲烷捕集核算模型。在此基础上,提出了井工煤矿甲烷减排路径及其实施方案。研究结果可为井工煤矿甲烷治理与低碳发展提供指导。
  • 图  1  井工煤矿全生命周期CH4捕集核算边界示意图

    Figure  1.  Boundary of CH4 capture accounting for the whole life cycle of underground coal mines

    图  2  井工煤矿全生命周期CH4捕集核算模型

    Figure  2.  Accounting model of CH4 capture in the whole life cycle of underground coal mine

    图  3  井工煤矿全生命周期各阶段CH4足迹分布

    Figure  3.  Distribution of CH4 footprint in each stage of underground coal mine life cycle

    图  4  井工煤矿全生命周期CH4减排路径

    Figure  4.  CH4emission reduction method in the whole life cycle of underground coal mine

    图  5  CH4监测技术对比

    Figure  5.  Comparison of CH4 monitoring technologies

    图  6  煤矿全生命周期CH4抽采示意图

    Figure  6.  CH4 drainage in the whole life cycle of coal mine

    图  7  煤矿CH4全浓度分级利用示意图

    Figure  7.  Full-concentration graded utilization of coal mine gas

    图  8  煤矿企业CH4减排方案示意图

    Figure  8.  CH4 emission reduction schemes for coal mining enterprises

  • [1] 薛明, 翁艺斌, 刘光全, 等. 石油与天然气生产过程甲烷逃逸排放检测与核算研究现状及建议[J]. 气候变化研究进展, 2019, 15(2): 187-195.

    XUE Ming, WENG Yibin, LIU Guangquan, et al. Current status on fugitive methane emission measurements and inventory during oil and gas production[J]. Climate Change Research, 2019, 15(2): 187-195.
    [2] 国家统计局. 中国第三产业统计年鉴-2022[M]. 北京: 中国统计出版社, 2022: 276.
    [3] 王莉, 何胜, 张洋洋, 等. 井工煤矿企业温室气体排放核算研究[J]. 中国环保产业, 2022(11): 60-65.

    WANG Li, HE Sheng, ZHANG Yangyang, et al. Research on greenhouse gas emission accounting of underground coal mining enterprises[J]. China Environmental Protection Industry, 2022(11): 60-65.
    [4] OLCZAK M, PIEBALGS A, BALCOMBE P. A global review of methane policies reveals that only 13%of emissions are covered with unclear effectiveness[J]. One Earth, 2023, 6(5): 519-535. doi: 10.1016/j.oneear.2023.04.009
    [5] DUDA A, KRZEMIEN A. Forecast of methane emission from closed underground coal mines exploited by longwall mining-A case study of Anna coal mine[J]. Journal of Sustainable Mining, 2018, 17(4): 184-194. doi: 10.1016/j.jsm.2018.06.004
    [6] KARACAN CÖ, WARWICK P D. Assessment of coal mine methane(CMM)and abandoned mine methane(AMM)resource potential of longwall mine panels: example from Northern Appalachian Basin, USA[J]. International Journal of Coal Geology, 2019, 208: 37-53. doi: 10.1016/j.coal.2019.04.005
    [7] KARACAN CÖ. Predicting methane emissions and developing reduction strategies for a Central Appalachian Basin, USA, longwall mine through analysis and modeling of geology and degasification system performance[J]. International Journal of Coal Geology, 2023, 270: 104234. doi: 10.1016/j.coal.2023.104234
    [8] 曹原广, 刘娜. 井工煤矿开采全生命周期碳排放特征研究[J]. 煤炭工程, 2023, 55(1): 162-167.

    CAO Yuanguang, LIU Na. Whole life cycle carbon emission characteristics of underground coal mining[J]. Coal Engineering, 2023, 55(1): 162-167.
    [9] GAO J L, GUAN C H, ZHANG B. China's CH4 emissions from coal mining: a review of current bottom-up inventories[J]. Science of the Total Environment, 2020, 725: 138295. doi: 10.1016/j.scitotenv.2020.138295
    [10] CHEN D, CHEN A, HU X Y, et al. Substantial methane emissions from abandoned coal mines in China[J]. Environmental Research, 2022, 214: 113944. doi: 10.1016/j.envres.2022.113944
    [11] 马翠梅, 戴尔阜, 刘乙辰, 等. 中国煤炭开采和矿后活动甲烷逃逸排放研究[J]. 资源科学, 2020, 42(2): 311-322.

    MA Cuimei, DAI Erfu, LIU Yichen, et al. Methane fugitive emissions from coal mining and post-mining activities in China[J]. Resources Science, 2020, 42(2): 311-322.
    [12] 蔡博峰, 朱松丽, 于胜民, 等. 《IPCC 2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程, 2019, 37(8): 1-11.

    CAI Bofeng, ZHU Songli, YU Shengmin, et al. The interpretation of 2019 refinement to the 2006 ipcc guidelines for national greenhouse gas inventory[J]. Environmental Engineering, 2019, 37(8): 1-11.
    [13] 李文睿, 赵耀耀, 王登科, 等. 煤中CH4渗透率估算方法研究[J]. 矿业科学学报, 2022, 7(2): 185-192. doi: 10.19606/j.cnki.jmst.2022.02.005

    LI Wenrui, ZHAO Yaoyao, WANG Dengke, et al. Study on estimation method of methane permeability in coal[J]. Journal of Mining Science and Technology, 2022, 7(2): 185-192. doi: 10.19606/j.cnki.jmst.2022.02.005
    [14] 马翠梅, 于胜民, 李湘. 中国温室气体清单关键类别分析[J]. 中国能源, 2015, 37(12): 26-32.

    MA Cuimei, YU Shengmin, LI Xiang. Analysis on key sources of China national greenhouse gas inventory[J]. Energy of China, 2015, 37(12): 26-32.
    [15] KHOLOD N, EVANS M, PILCHER R C, et al. Global methane emissions from coal mining to continue growing even with declining coal production[J]. Journal of Cleaner Production, 2020, 256: 120489. doi: 10.1016/j.jclepro.2020.120489
    [16] 桑树勋, 刘世奇, 韩思杰, 等. 中国煤炭甲烷管控与减排潜力[J]. 煤田地质与勘探, 2023, 51(1): 159-175.

    SANG Shuxun, LIU Shiqi, HAN Sijie, et al. Coal methane control and its emission reduction potential in China[J]. Coal Geology & Exploration, 2023, 51(1): 159-175.
    [17] 梁运涛, 陈成锋, 田富超, 等. 甲烷气体检测技术及其在煤矿中的应用[J]. 煤炭科学技术, 2021, 49(4): 40-48.

    LIANG Yuntao, CHEN Chengfeng, TIAN Fuchao, et al. Methane gas detection technology and its application in coal mines[J]. Coal Science and Technology, 2021, 49(4): 40-48.
    [18] 李树刚, 张静非, 尚建选, 等. 双碳目标下煤气同采技术体系构想及内涵[J]. 煤炭学报, 2022, 47(4): 1416-1429.

    LI Shugang, ZHANG Jingfei, SHANG Jianxuan, et al. Conception and connotation of coal and gas co-extraction technology system under the goal of carbon peak and carbon neutrality[J]. Journal of China Coal Society, 2022, 47(4): 1416-1429.
    [19] 林海飞, 周捷, 高帆, 等. 基于特征选择和机器学习融合的煤层瓦斯含量预测[J]. 煤炭科学技术, 2021, 49(5): 44-51.

    LIN Haifei, ZHOU Jie, GAO Fan, et al. Coal seam gas content prediction based on fusion of feature selection and machine learning[J]. Coal Science and Technology, 2021, 49(5): 44-51.
    [20] 李泉新, 姚克, 方俊, 等. 煤矿井下瓦斯高效精准抽采定向钻进技术与装备[J]. 煤炭科学技术, 2023, 51(S1): 65-72.

    LI Quanxin, YAO Ke, FANG Jun, et al. Directional drilling technology and equipment for efficient and accurate gas drainage underground coal mine[J]. Coal Science and Technology, 2023, 51(S1): 65-72.
    [21] SIEMEK J, MACUDA J, LUKANKO L, et al. The technology of drilling wells for capturing methane from abandoned coal mines[J]. Archives of Mining Sciences, 2020, 65(1): 89-101.
    [22] 周爱桃, 张蒙, 王凯, 等. 布尔台矿综放工作面采空区瓦斯运移规律及瓦斯抽采优化研究[J]. 矿业科学学报, 2020, 5(3): 291-301. http://kykxxb.cumtb.edu.cn/article/id/292

    ZHOU Aitao, ZHANG Meng, WANG Kai, et al. Research on gas migration law and gas drainage parameters optimization in goaf of fully mechanized caving face in Buertai Coal Mine[J]. Journal of Mining Science and Technology, 2020, 5(3): 291-301. http://kykxxb.cumtb.edu.cn/article/id/292
    [23] 李国富, 李超, 霍春秀, 等. 山西重点煤矿区瓦斯梯级利用关键技术与工程示范[J]. 煤田地质与勘探, 2022, 50(9): 42-50.

    LI Guofu, LI Chao, HUO Chunxiu, et al. Key technology and engineering demonstration of gas cascade utilization in key coal mining areas of Shanxi Province[J]. Coal Geology & Exploration, 2022, 50(9): 42-50.
    [24] 张建国, 王满, 张国川, 等. 平顶山矿区深部动力灾害防治与资源绿色开采[J]. 煤炭科学技术, 2023, 51(1): 295-303.

    ZHANG Jianguo, WANG Man, ZHANG Guochuan, et al. Prevention and control of deep dynamic disasters and green exploitation of resources in Pingdingshan mining area[J]. Coal Science and Technology, 2023, 51(1): 295-303.
    [25] 张志刚, 霍春秀. 煤矿区煤层气利用技术研究进展[J]. 矿业安全与环保, 2022, 49(4): 59-64.

    ZHANG Zhigang, HUO Chunxiu. Research progress of CBM utilization technology in mining areas[J]. Mining Safety & Environmental Protection, 2022, 49(4): 59-64.
    [26] 刘文革, 徐鑫, 韩甲业, 等. 碳中和目标下煤矿甲烷减排趋势模型及关键技术[J]. 煤炭学报, 2022, 47(1): 470-479.

    LIU Wenge, XU Xin, HAN Jiaye, et al. Trend model and key technologies of coal mine methane emission reduction aiming for the carbon neutrality[J]. Journal of China Coal Society, 2022, 47(1): 470-479.
    [27] SINGH A K, SAHU J N. Coal Mine gas: a new fuel utilization technique for India[J]. International Journal of Green Energy, 2018, 15(12): 732-743.
    [28] 张保勇, 于洋, 吴强, 等. 基于水合物分离法提纯高浓度CO2瓦斯的相平衡研究[J]. 煤炭科学技术, 2020, 48(10): 113-118.

    ZHANG Baoyong, YU Yang, WU Qiang, et al. Study on phase equilibrium of separation and purification for gas with high CO2 concentration based on hydrate method[J]. Coal Science and Technology, 2020, 48(10): 113-118.
  • 加载中
图(8)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  27
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-08
  • 修回日期:  2023-08-08
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回