留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低阻文丘里振弦栅除尘系统内流场模拟研究

周紫怡 陈祖云 刘立新 钟芳权 郭裕民 张际敏 骆炳林 赖昭琦

周紫怡, 陈祖云, 刘立新, 钟芳权, 郭裕民, 张际敏, 骆炳林, 赖昭琦. 低阻文丘里振弦栅除尘系统内流场模拟研究[J]. 矿业科学学报, 2024, 9(1): 88-97. doi: 10.19606/j.cnki.jmst.2024.01.009
引用本文: 周紫怡, 陈祖云, 刘立新, 钟芳权, 郭裕民, 张际敏, 骆炳林, 赖昭琦. 低阻文丘里振弦栅除尘系统内流场模拟研究[J]. 矿业科学学报, 2024, 9(1): 88-97. doi: 10.19606/j.cnki.jmst.2024.01.009
ZHOU Ziyi, CHEN Zuyun, LIU Lixin, ZHONG Fangquan, GUO Yumin, ZHANG Jimin, LUO Binglin, LAI Zhaoqi. Simulation of flow field in low-resistance Venturi vibrating wire grid dust removal system[J]. Journal of Mining Science and Technology, 2024, 9(1): 88-97. doi: 10.19606/j.cnki.jmst.2024.01.009
Citation: ZHOU Ziyi, CHEN Zuyun, LIU Lixin, ZHONG Fangquan, GUO Yumin, ZHANG Jimin, LUO Binglin, LAI Zhaoqi. Simulation of flow field in low-resistance Venturi vibrating wire grid dust removal system[J]. Journal of Mining Science and Technology, 2024, 9(1): 88-97. doi: 10.19606/j.cnki.jmst.2024.01.009

低阻文丘里振弦栅除尘系统内流场模拟研究

doi: 10.19606/j.cnki.jmst.2024.01.009
基金项目: 

国家自然科学基金 51864016

国家自然科学基金 51464016

详细信息
    作者简介:

    周紫怡(1999—),女,江西吉安人,硕士研究生,主要从事职业危害控制理论及应用方面的研究工作。Tel:152798034392,E-mail:2584528500@qq.com

    通讯作者:

    陈祖云(1972—),男,江西赣县人,博士,教授,主要从事职业危害控制理论及应用方面的研究工作。Tel:13870771702,E-mail:welczy@163.com

  • 中图分类号: TD714+45, X513

Simulation of flow field in low-resistance Venturi vibrating wire grid dust removal system

  • 摘要: 为探究除尘系统流场分布情况以及粉尘与液滴颗粒对除尘系统性能的影响,运用Fluent模拟研究气态单相流、气固两相流和气固液三相流的流场分布情况,分析除尘器在不同工况条件下压力与流场分布规律以及颗粒的运动情况。结果表明:除尘系统流场主要受除尘器结构的影响,受粉尘颗粒的影响较小;液滴颗粒的存在会提高系统的除尘效率;加入液滴颗粒后,粉尘运动凌乱度增强,与液滴碰撞作用加强,促进了细微粉尘的凝聚,但同时会影响除尘器流场稳定性,增加除尘系统阻力损失。
  • 图  1  低阻文丘里振弦纤维栅除尘系统物理模型

    Figure  1.  Physical model of low resistance Venturi vibrating wire grid dust removal system

    图  2  除尘器网格划分

    Figure  2.  Grid division of dust collector

    图  3  Y=239.486 3截面静压分布云图

    Figure  3.  Cloud map of static pressure distribution in Y=239.486 3 section

    图  4  Y=239.486 3截面动压分布云图

    Figure  4.  Dynamic pressure distribution cloud map of section Y=239.486 3

    图  5  Y=239.486 3截面湍动能分布

    Figure  5.  Turbulent kinetic energy distribution of Y=239.486 3 section

    图  6  入口方式2.03 m/s除尘器流场分布

    Figure  6.  Streamline distribution of 2.03 m/s dust collector in inlet mode

    图  7  气固两相流颗粒运动轨迹

    Figure  7.  Particle trajectory of gas-solid two-phase flow

    图  8  除尘器轴线方向不同位置粉尘速度分布

    Figure  8.  Velocity distribution at different positions along the axis of the dust collector

    图  9  气固液三相流颗粒运动轨迹

    Figure  9.  Particle trajectory of gas-solid-liquid three-phase flow

    图  10  除尘器轴线方向不同位置速度分布

    Figure  10.  Velocity distribution at different positions along the axis of the dust collector

    表  1  压力与速度变化数据

    Table  1.   Pressure and velocity changes

    位置 1 2 3 4 5
    风速v/(m·s-1) 1.84 2.94 4.89 6.64 8.11
    阻力Δh/Pa 3.73 10.02 25.7 44.17 65.82
    下载: 导出CSV

    表  2  各位置静压、动压和总压值

    Table  2.   Static pressure, dynamic pressure, and total pressure values at each position  Pa

    流态 静压差 文丘里静压差 除尘系统动压差 文丘里动压差 总压差 文丘里总压差
    单相流 -96.32 -85.17 +12.12 +22.35 -84.21 -62.82
    两相流 -96.31 -85.09 +12.12 +22.31 -84.19 -62.77
    三相流 -98.55 -88.33 +12.17 +21.79 -86.40 -66.55
    注:“+”表示压力增加,“-”表示压力减小。
    下载: 导出CSV
  • [1] 王保存. 自激式除尘器捕集体形成过程及其动态特性[D]. 徐州: 中国矿业大学, 2016.

    WANG Baocun. The formation process and its dynamic characteristics of the self-excited dust collection[D]. Xuzhou: China University of Mining and Technology, 2016.
    [2] 乔石. 脉冲电晕放电湿法复合除尘理论与实验研究[D]. 青岛: 青岛理工大学, 2018.

    QIAO Shi. Theoretical and experimental study on pulsed corona discharge wet compound precipitation[D]. Qingdao: Qingdao Tehcnology University, 2018.
    [3] 邹明. 低阻文丘里振弦纤维栅水膜除尘器实验及机理研究[D]. 赣州: 江西理工大学, 2020.

    ZOU Ming. Experimental and mechanism study of low-resistance venturi water film dust collector with vibrating fiber grid[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.
    [4] 张汉君. 静电除尘器内二维稳定浓度场的数值模拟[J]. 江西理工大学学报, 1990, 11(4): 23-30.

    ZHANG Hanjun. Numerical simulation of two-dimensional steady concentration field in an electrostatic precipitator[J]. Journal of Jiangxi University of Science and Technology, 1990, 11(4): 23-30.
    [5] 沈恒根, 沈滨, 王红兵, 等. 惯性沉降空间含尘气流运动及其分级效率计算[J]. 西安建筑科技大学学报, 1996, 28(3): 237-240, 272.

    SHEN Henggen, SHEN Bin, WANG Hongbing, et al. On the air-flow of dust content and computation of fractional efficiency in the inertia settling space[J]. Journal of Xi'an University of Architecture & Technology, 1996, 28(3): 237-240, 272.
    [6] 张彦婷, 高广德, 操波. FLUENT软件在我国环保设备领域中的应用[J]. 能源与环境, 2008(1): 83-85.

    ZHANG Yanting, GAO Guangde, CAO Bo. Application of FLUENT software in the field of environmental protection equipment in China[J]. Energy and Environment, 2008(1): 83-85.
    [7] 张建卓, 祝天姿, 高猛, 等. 基于FLUENT的综掘面风幕集尘除尘系统数值模拟[J]. 微计算机信息, 2011, 27(7): 28-29, 5.

    ZHANG Jianzhuo, ZHU Tianzi, GAO Meng, et al. Numerical simulation of dust-collecting and dedusting system with air-curtain in fully mechanized excavation face based on fluent[J]. Microcomputer Information, 2011, 27(7): 28-29, 5.
    [8] 黄浩凯. 异形纤维捕集细颗粒物的格子Boltzmann数值模拟[D]. 武汉: 华中科技大学, 2017.

    HUANG Haokai. Simulation of fine particles filtration process of noncircular fibers using lattice boltzmann method[D]. Wuhan: Huazhong University of Science and Technology, 2017.
    [9] 徐青涛, 杨国华, 沈炜杰, 等. 双层滤料颗粒床高温除尘器气固两相流场数值模拟[J]. 宁波大学学报: 理工版, 2018, 31(3): 117-120.

    XU Qingtao, YANG Guohua, SHEN Weijie, et al. Numerical simulation of gas-solid two-phase flow field of high temperature with dual-layer granular bed filter[J]. Journal of Ningbo University: Natural Science & Engineering Edition, 2018, 31(3): 117-120.
    [10] 郗元, 姜文文, 代岩, 等. 基于CFD的锥形散射器强化清灰特性数值模拟及优化[J]. 轻工机械, 2021, 39(1): 98-103.

    XI Yuan, JIANG Wenwen, DAI Yan, et al. Numerical simulation and optimal of conical diffuser for ash removal characteristics based on CFD[J]. Light Industry Machinery, 2021, 39(1): 98-103.
    [11] 林光荣. 综掘压气水吸气喷雾降尘技术研究[D]. 镇江: 江苏大学, 2015.

    LIN Guangrong. Study on dust suppression technology of fully mechanized excavation compressed air water inhalation spray[D]. Zhenjiang: Jiangsu University, 2015.
    [12] SHAHEED R, MOHAMMADIAN A, GILDEH H K. A comparison of standard k-ε and realizable k-ε turbulence models in curved and confluent channels[J]. Environmental Fluid Mechanics, 2019, 19(2): 543-568.
    [13] 马颖辉. 纳米颗粒射流抛光数值模拟及实验研究[D]. 北京: 北京林业大学, 2016.

    MA Yinghui. Numerical simulation and experimental study on jet polishing using nanoparticles[D]. Beijing: Beijing Forestry University, 2016.
    [14] 叶宇衡. 颗粒层除尘装置的设计与实验[D]. 沈阳: 东北大学, 2014.

    YE Yuheng. Design and experiment of granular layer dust remover[D]. Shenyang: Northeastern University, 2014.
    [15] 张留祥. 20万吨/年超细固硫灰过热蒸汽袋式除尘器研究[D]. 绵阳: 西南科技大学, 2014.

    ZHANG Liuxiang. Study on 200 000 tons/year ultra-fine desulfurization ash superheated steam bag filter[D]. Mianyang: Southwest University of Science and Technology, 2014.
    [16] 刘智. 多孔介质复合腔体内流体流动及传热实验研究[D]. 济南: 山东建筑大学, 2014.

    LIU Zhi. The experimental study on heat transfer and natural convection in a complex cavity partially filled with porous medium[D]. Jinan: Shandong Jianzhu University, 2014.
    [17] 程攀攀. 颗粒粉尘在通风管道内的运移规律研究[D]. 赣州: 江西理工大学, 2017.

    CHENG Panpan. The research of motion regularity of granular dust in the ventilation pipe[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.
    [18] 高宗杰. 喷雾荷电振弦纤维栅过滤除尘数值模拟研究[D]. 赣州: 江西理工大学, 2018.

    GAO Zongjie. Numerical simulation study on spray charged vibrating wire grid[D]. Ganzhou: Jiangxi University of Science and Technology, 2018.
    [19] 杨昆. 井工三矿34201综采工作面粉尘防治技术研究[D]. 青岛: 山东科技大学, 2015.

    YANG Kun. Study on dust control technology in 34201 fully mechanized mining face of Jinggong No. 3 Mine[D]. Qingdao: Shandong University of Science and Technology, 2015.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  30
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-07-30
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回