留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同功率微波预处理煤样增透效果及能量变化研究

齐消寒 王品 侯双荣 刘阳 朱同光

齐消寒, 王品, 侯双荣, 刘阳, 朱同光. 不同功率微波预处理煤样增透效果及能量变化研究[J]. 矿业科学学报, 2024, 9(1): 66-76. doi: 10.19606/j.cnki.jmst.2024.01.007
引用本文: 齐消寒, 王品, 侯双荣, 刘阳, 朱同光. 不同功率微波预处理煤样增透效果及能量变化研究[J]. 矿业科学学报, 2024, 9(1): 66-76. doi: 10.19606/j.cnki.jmst.2024.01.007
QI Xiaohan, WANG Pin, HOU Shuangrong, LIU Yang, ZHU Tongguang. Study on the effect of penetration enhancement and energy change of coal samples pretreated with different microwave powers[J]. Journal of Mining Science and Technology, 2024, 9(1): 66-76. doi: 10.19606/j.cnki.jmst.2024.01.007
Citation: QI Xiaohan, WANG Pin, HOU Shuangrong, LIU Yang, ZHU Tongguang. Study on the effect of penetration enhancement and energy change of coal samples pretreated with different microwave powers[J]. Journal of Mining Science and Technology, 2024, 9(1): 66-76. doi: 10.19606/j.cnki.jmst.2024.01.007

不同功率微波预处理煤样增透效果及能量变化研究

doi: 10.19606/j.cnki.jmst.2024.01.007
基金项目: 

教育部重点实验室开放基金 JSK202010

国家自然科学基金 52274205

详细信息
    作者简介:

    齐消寒(1987—),男,河北晋州人,博士,讲师,硕士生导师,主要从事矿山岩石力学、矿井瓦斯灾害防治方面的研究工作。Tel:18342363755,E-mail:qxh871225@126.com

  • 中图分类号: TD712

Study on the effect of penetration enhancement and energy change of coal samples pretreated with different microwave powers

  • 摘要: 为探究不同功率微波下受载煤体渗透率及破坏变形能量演化特征,采用高压三维可视力学实验设备,开展不同功率微波预处理后煤样的三轴压缩渗流实验。结果表明:不同功率微波处理后煤样弹性模量呈现先降后升趋势,峰值应力与泊松比均呈现下降趋势;随微波功率增加,煤样更容易被压密,径向及体应力-应变曲线整体应变值变大,扩容膨胀现象更加显著;煤样渗透率随功率增加呈现上升趋势,符合对数函数关系;不同预处理煤样峰值应力处的总能量U与弹性能Ue总体呈下降趋势,煤样在弹性阶段积聚弹性能Ue的能力减弱;相同照射时间下相比200 W和600 W微波预处理,400 W微波预处理时各能量变化量明显变大,煤样耗散能Ud占总能量U比值最小,为24%。研究成果可为微波致裂煤层促进瓦斯抽采研究提供参考。
  • 图  1  煤样试件加工制作示意图

    Figure  1.  Schematic diagram of coal sample processing

    图  2  实验装置示意图

    Figure  2.  Experimental setup

    图  3  煤样受力情况示意图

    Figure  3.  Force analysis on the coal sample

    图  4  实验基本流程

    Figure  4.  Test procedure

    图  5  不同功率微波下煤样峰值应力变化曲线

    Figure  5.  Curves of peak stress in coal samples under different power microwaves

    图  6  不同功率微波预处理煤样表面裂纹分布

    Figure  6.  Distribution of cracks on the surface of coal samples pretreated with different power microwave

    图  7  微波降低煤样抗压强度原理示意图

    Figure  7.  The mechanism of microwave reducing the compressive strength of coal samples

    图  8  不同功率微波辐射下煤样应力-应变曲线

    Figure  8.  Stress-strain curves of coal samples under different power microwave radiation

    图  9  煤样破坏变形状态等值线场

    Figure  9.  Contour field of coal sample damage deformation state

    图  10  煤样破坏形态实物

    Figure  10.  Physical destruction of coal samples

    图  11  不同功率微波作用下煤样渗透率变化曲线

    Figure  11.  Variation curve of coal sample permeability under the action of microwave with different power

    图  12  微波功率与煤样初始渗透率拟合曲线

    Figure  12.  Fitting curve of microwave power to initial permeability of coal samples

    图  13  不同功率微波作用下煤样能量演化曲线

    Figure  13.  Energy evolution curve of coal sample under the action of microwave with different power

    表  1  预处理煤样参数

    Table  1.   Parameters of pre-treated coal samples

    微波功率P/W 质量/g 波速/(km·s-1) 煤样温度/℃
    0 235.29 1.92 23.32
    200 223.72 1.86 41.37
    400 219.24 1.92 62.74
    600 228.32 1.94 84.46
    下载: 导出CSV

    表  2  煤样力学参数

    Table  2.   Mechanical parameters of coal samples

    微波功率P/W 峰值应力σmax/MPa 弹性模量E/MPa 泊松比
    0 63.056 2 878.909 0.418
    200 54.580 1 979.343 0.386
    400 39.156 1 785.434 0.323
    600 33.229 2 129.187 0.259
    下载: 导出CSV

    表  3  煤样峰值应力处各能量特征

    Table  3.   Characteristics of each energy at the peak stress of coal samples

    微波功率P/W U/(MJ·m-3) Ue/(MJ·m-3) Ud/(MJ·m-3)
    0 1.289 0.724 0.565
    200 1.235 0.741 0.494
    400 0.558 0.423 0.135
    600 0.404 0.259 0.145
    下载: 导出CSV
  • [1] 李祥春, 张良, 李忠备, 等. 不同瓦斯压力下煤岩三轴加载时蠕变规律及模型[J]. 煤炭学报, 2018, 43(2): 473-482.

    LI Xiangchun, ZHANG Liang, LI Zhongbei, et al. Creep law and model of coal under triaxial loading at different gas pressures[J]. Journal of China Coal Society, 2018, 43(2): 473-482.
    [2] 孟召平, 卢易新. 高煤阶煤样水力压裂前后应力-渗透率试验研究[J]. 煤炭科学技术, 2023, 51(1): 353-360.

    MENG Zhaoping, LU Yixin. Experimental study on stress-permeability of high rank coal samples before and after hydraulic fracturing[J]. Coal Science and Technology, 2023, 51(1): 353-360.
    [3] LI Q G, LING B Q, ZHAI C. The effect of pulse frequency on the fracture extension during hydraulic fracturing[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 296-303. doi: 10.1016/j.jngse.2014.08.019
    [4] 张永将, 黄振飞, 季飞. 基于水力割缝卸压的煤岩与瓦斯动力灾害防控技术[J]. 煤炭科学技术, 2021, 49(4): 133-141.

    ZHANG Yongjiang, HUANG Zhenfei, JI Fei. Prevention and control technology of coal-rock and gas dynamic disaster based on water jet slotting pressure relief[J]. Coal Science and Technology, 2021, 49(4): 133-141.
    [5] 贾明魁, 李学臣, 郭艳飞, 等. 定向长钻孔超前预抽煤层瓦斯区域治理技术[J]. 煤矿安全, 2018, 49(12): 68-71.

    JIA Mingkui, LI Xuechen, GUO Yanfei, et al. Regional control technology for gas pre-drainage in coal seam by directional long borehole[J]. Safety in Coal Mines, 2018, 49(12): 68-71.
    [6] LI X S, SI K, HE T, et al. Dynamic effect of shaped charge blasting and its application in coal seam permeability enhancement[J]. ACS Omega, 2022, 7(29): 25353-25365. doi: 10.1021/acsomega.2c02329
    [7] 王菁瑞, 赵耀江, 李雨成, 等. 液氮致裂时间对煤样力学性能、渗透性与致裂机理的影响[J]. 煤炭科学技术, 2023, 51(6): 101-110.

    WANG Jingrui, ZHAO Yaojiang, LI Yucheng, et al. Analysis of mechanical properties, permeability and fracturing mechanism of coal samples at different fracturing time of liquid nitrogen[J]. Coal Science and Technology, 2023, 51(6): 101-110.
    [8] ZHANG F. Research into the mechanism and application of liquid CO2 phase-transition fracturing in a coal seam to enhance permeability[J]. Sustainability, 2023, 15(4): 3308. doi: 10.3390/su15043308
    [9] CHEN H D, WANG Z F, CHEN X E, et al. Increasing permeability of coal seams using the phase energy of liquid carbon dioxide[J]. Journal of CO2 Utilization, 2017, 19: 112-119. doi: 10.1016/j.jcou.2017.03.010
    [10] GUO H Y, LIU X L, XIA D P, et al. Biological permeability enhancement technology for coal reservoir[J]. Acta Geologica Sinica-English Edition, 2017, 91(5): 1938-1939. doi: 10.1111/1755-6724.13432
    [11] KINGMAN S W, ROWSON N A. Microwave treatment of minerals-a review[J]. Minerals Engineering, 1998, 11(11): 1081-1087. doi: 10.1016/S0892-6875(98)00094-6
    [12] 王卫东, 杨虓, 孙远, 等. 微波场中褐煤水分脱除规律及影响因素分析[J]. 煤炭学报, 2014, 39(6): 1159-63.

    WANG Weidong, YANG Xiao, SUN Yuan, et al. Lignite dewatering rule and related influencing factors in the microwave field[J]. Journal of China Coal Society, 2014, 39(6): 1159-1163.
    [13] HONG Y D, LIN B Q, ZHU C J, et al. Effect of microwave irradiation on petrophysical characterization of coals[J]. Applied Thermal Engineering, 2016, 102: 1109-1125. doi: 10.1016/j.applthermaleng.2016.04.019
    [14] HONG Y D, LIN B Q, XIANG H A, et al. Variable pore structure and gas permeability of coal cores after microwave irradiation[J]. Geofluids, 2018, 2018: 1-13.
    [15] 胡国忠, 王春博, 许家林, 等. 微波辐射降低硬煤冲击倾向性试验研究[J]. 煤炭学报, 2021, 46(2): 450-465.

    HU Guozhong, WANG Chunbo, XU Jialin, et al. Experimental investigation on decreasing burst tendency of hard coal using microwave irradiation[J]. Journal of China Coal Society, 2021, 46(2): 450-465.
    [16] 单鹏飞, 杨攀, 来兴平, 等. 微波-水交互作用下富油煤岩渐进性破坏规律试验[J]. 岩石力学与工程学报, 2023, 42: 1-13.

    SHAN Pengfei, YANG Pan, LAI Xingping, et al. Experiment on progressive failure law of tar-rich coal under microwave-water interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42: 1-13.
    [17] KUMAR H, LESTER E, KINGMAN S, et al. Inducing fractures and increasing cleat apertures in a bituminous coal under isotropic stress via application of microwave energy[J]. International Journal of Coal Geology, 2011, 88(1): 75-82. doi: 10.1016/j.coal.2011.07.007
    [18] 李贺, 林柏泉, 洪溢都, 等. 微波辐射下煤体孔裂隙结构演化特性[J]. 中国矿业大学学报, 2017, 46(6): 1194-1201.

    LI He, LIN Baiquan, HONG Yidu, et al. Effect of microwave irradiation on pore and fracture evolutions of coal[J]. Journal of China University of Mining & Technology, 2017, 46(6): 1194-1201.
    [19] 李贺. 微波辐射下煤体热力响应及其流-固耦合机制研究[D]. 徐州: 中国矿业大学, 2018.

    LI He. Thermodynamical response of coal and the hydraulic-mechanical coupling mechanism under microwave irradiation[D]. Xuzhou: China University of Mining and Technology, 2018.
    [20] LI H, SHI S L, LIN B Q, et al. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals[J]. Energy, 2019, 187: 1-14.
    [21] LI H, SHI S L, LU J X, et al. Pore structure and multifractal analysis of coal subjected to microwave heating[J]. Powder Technology, 2019, 346: 97-108. doi: 10.1016/j.powtec.2019.02.009
    [22] MA Y L, CHENG Y, SHANG W L, et al. Experimental study on coal permeability variation during microwave radiation[J]. Advances in Materials Science and Engineering, 2020, 2020: 1-18.
    [23] 胡国忠, 杨南, 朱健, 等. 微波辐射下含水分煤体孔渗特性及表面裂隙演化特征实验研究[J]. 煤炭学报, 2020, 45(S2): 813-822.

    HU Guozhong, YANG Nan, ZHU Jian, et al. Evolution characteristics of microwave irradiation on pore-permeability and surface cracks of coal with water: an experimental study[J]. Journal of China Coal Society, 2020, 45(S2): 813-822.
    [24] 曹轩. 微波热循环作用对含水煤体的致裂增透特性研究[D]. 徐州: 中国矿业大学, 2021.

    CAO Xuan. Study on fracturing and permeability enhancement of water bearing coals under microwave thermal cycling[D]. Xuzhou: China University of Mining & Technology, 2021.
    [25] 林柏泉, 钟玉婷, 曹轩, 等. 循环微波辐射下煤体孔裂隙结构演化特征[J]. 西安科技大学学报, 2021, 41(6): 964-972.

    LIN Baiquan, ZHONG Yuting, CAO Xuan, et al. Effect of cyclic microwave irradiation on pore and fracture evolutions of coal[J]. Journal of Xi'an University of Science and Technology, 2021, 41(6): 964-972.
    [26] JEBELLI A, MAHABADI A, AHMAD R. Design and implementation of a coalbed methane extraction device using microwave radiation[J]. Geology, 2021.
    [27] 袁曦, 张军伟. 分阶段卸载条件下突出煤变形特征与渗流特性[J]. 煤炭学报, 2017, 42(6): 1451-1457.

    YUAN Xi, ZHANG Junwei. Deformation and permeability characteristic of outburst coal under step unloading conditions[J]. Journal of China Coal Society, 2017, 42(6): 1451-1457.
    [28] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010.

    XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010.
    [29] 康向涛, 黄滚, 宋真龙, 等. 三轴压缩下含瓦斯煤的能耗与渗流特性研究[J]. 岩土力学, 2015, 36(3): 762-768.

    KANG Xiangtao, HUANG Gun, SONG Zhenlong, et al. Research on characteristics of energy dissipation and seepage of coal containing gas under triaxial compression[J]. Rock and Soil Mechanics, 2015, 36(3): 762-768.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  24
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-25
  • 修回日期:  2023-09-01
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回