留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全长预应力锚注支护下深部巷道控制效果对比研究

王洪涛 高广龙 张红军 李建建 解学磊 赵万里

王洪涛, 高广龙, 张红军, 李建建, 解学磊, 赵万里. 全长预应力锚注支护下深部巷道控制效果对比研究[J]. 矿业科学学报, 2024, 9(1): 53-65. doi: 10.19606/j.cnki.jmst.2024.01.006
引用本文: 王洪涛, 高广龙, 张红军, 李建建, 解学磊, 赵万里. 全长预应力锚注支护下深部巷道控制效果对比研究[J]. 矿业科学学报, 2024, 9(1): 53-65. doi: 10.19606/j.cnki.jmst.2024.01.006
WANG Hongtao, GAO Guanglong, ZHANG Hongjun, LI Jianjian, XIE Xuelei, ZHAO Wanli. Comparative study on control effect of deep roadway under full-length prestressed bolt-grouting support[J]. Journal of Mining Science and Technology, 2024, 9(1): 53-65. doi: 10.19606/j.cnki.jmst.2024.01.006
Citation: WANG Hongtao, GAO Guanglong, ZHANG Hongjun, LI Jianjian, XIE Xuelei, ZHAO Wanli. Comparative study on control effect of deep roadway under full-length prestressed bolt-grouting support[J]. Journal of Mining Science and Technology, 2024, 9(1): 53-65. doi: 10.19606/j.cnki.jmst.2024.01.006

全长预应力锚注支护下深部巷道控制效果对比研究

doi: 10.19606/j.cnki.jmst.2024.01.006
基金项目: 

国家自然科学基金 52374093

中国博士后科学基金 2022M711314

山东省自然科学基金 ZR2022ME088

详细信息
    作者简介:

    王洪涛(1986—),男,山东泰安人,博士,研究员,硕士生导师,主要从事岩土与地下工程支护理论及技术方面的研究工作。Tel:15098709885,E-mail:wanghongtao918@163.com

  • 中图分类号: TD353

Comparative study on control effect of deep roadway under full-length prestressed bolt-grouting support

  • 摘要: 本文基于后注浆的全长预应力锚注支护工艺,并通过对FLAC3D软件中内嵌PILE结构单元修正,提出了全长预应力锚注支护数值模拟方法。在此基础上,开展了地应力、原岩强度等级、支护构件长度、布设间距、注浆强化指数与预应力6种因素下巷道围岩控制效果数值模拟对比研究,揭示了各类因素对围岩变形量、塑性区演化的影响规律,构建了全长预应力锚注支护下控制效果敏感性评价指标,将影响因素依次划分为围岩强度、地应力、锚注支护构件设计3个层级,并根据各因素敏感性层级给出了工程措施建议。最后,以现场典型软弱破碎地层巷道为工程依托,研发了具有强度高、可施加预应力等优势的组合式高强注浆锚杆与高强中空注浆锚索。通过现场应用,验证了全长预应力锚注支护可有效增强软弱破碎围岩自承载能力,充分发挥锚固构件的支护潜力,限制巷道围岩变形破坏。
  • 图  1  全长预应力锚注支护过程

    Figure  1.  Full-length prestressed bolt-grouting support process

    图  2  全长预应力锚注支护方式数值模拟方法流程

    Figure  2.  Numerical simulation process of full-length prestressed bolt-grouting support

    图  3  不同预应力下围岩支护应力场分布

    Figure  3.  Stress field distribution corresponding to different prestress

    图  4  不同锚固长度下围岩支护应力场分布

    Figure  4.  Stress field distribution corresponding to different anchorage lengths

    图  5  数值计算模型及支护构件示意图

    Figure  5.  Numerical calculation model and supporting members diagram

    图  6  不同地应力水平下围岩总位移云图

    Figure  6.  Total displacement cloud map of surrounding rock under different ground stress levels

    图  7  不同地应力水平下围岩塑性区半径

    Figure  7.  Radius of plastic zone of surrounding rock under different ground stress levels

    图  8  不同地应力水平下巷道最大位移变化曲线

    Figure  8.  The maximum displacement curve of roadway under different ground stress levels

    图  9  不同地应力水平下巷道塑性区半径变化曲线

    Figure  9.  Variation curve of plastic zone radius of roadway under different ground stress levels

    图  10  不同原岩强度等级下巷道最大位移变化曲线

    Figure  10.  The maximum displacement curve of roadway under different original rock strength grades

    图  11  不同原岩强度等级下巷道塑性区半径变化曲线

    Figure  11.  Variation curve of plastic zone radius of roadway under different original rock strength grades

    图  12  不同支护构件长度下巷道最大位移变化曲线

    Figure  12.  The maximum displacement curve of roadway under different support member lengths

    图  13  不同支护构件长度下巷道塑性区半径变化曲线

    Figure  13.  Variation curve of plastic zone radius of roadway under different support member lengths

    图  14  不同布设间距下巷道最大位移变化曲线

    Figure  14.  Maximum displacement curve of roadway under different spacing

    图  15  不同布设间距下塑性区半径变化曲线

    Figure  15.  Radius variation curve of plastic zone under different layout spacing

    图  16  不同注浆强化指数下巷道最大位移变化曲线

    Figure  16.  Maximum displacement curve of roadway under different grouting strengthening indexes

    图  17  不同注浆强化指数下塑性区半径变化曲线

    Figure  17.  Curve of plastic zone radius under different grouting strengthening indexes

    图  18  不同预应力下巷道最大位移变化曲线

    Figure  18.  The maximum displacement curve of roadway under different prestress

    图  19  不同预应力下塑性区半径变化曲线

    Figure  19.  Curve of plastic zone radius under different prestress

    图  20  影响因素敏感性指标柱状图

    Figure  20.  Sensitivity index histogram of influencing factors

    图  21  现场巷道围岩松动破坏范围探测结果

    Figure  21.  Detection results of loose failure range of roadway surrounding rock

    图  22  组合式高强注浆锚杆与高强中空注浆锚索

    Figure  22.  Combined high-strength grouting bolt and high-strength hollow grouting anchor cable

    图  23  全长预应力锚注支护扩修方案下巷道断面设计

    Figure  23.  Design of roadway section under full-length prestressed bolt-grouting support expansion scheme

    图  24  高强全长预应力锚注扩修支护施工工艺

    Figure  24.  Construction technology of high-strength full-length prestressed anchor grouting expansion support

    图  25  典型巷道断面表面收敛监测结果

    Figure  25.  Typical roadway section surface convergence monitoring results

    图  26  现场巷道扩修后治理效果

    Figure  26.  Treatment effect after roadway expansion

    表  1  全长预应力锚注支护数值模拟对比方案

    Table  1.   Comparison of numerical simulation of full-length prestressed bolt-grouting support

    类别 编号 地应力/MPa 原岩强度等级 支护构件长度/m 布设间距/m 注浆强化指数 预应力/kN
    不同地应力 A1 5 1 2.5 0.8 1.5 60
    A2 10
    A3 15
    A4 20
    A5 25
    不同原岩强度等级 B1 15 0.6 2.5 0.8 1.5 60
    B2 0.8
    B3 1
    B4 1.2
    B5 1.4
    不同支护构件长度 C1 15 1 1.5 0.8 1.5 60
    C2 2
    C3 2.5
    C4 3
    C5 3.5
    不同布设间距 D1 15 1 2.5 0.8(4根) 1.5 60
    D2 1(4根)
    D3 1.2(3根)
    D4 1.4(3根)
    D5 1.6(2根)
    不同注浆强化指数 E1 15 1 2.5 0.8 1 60
    E2 1.25
    E3 1.5
    E4 1.75
    E5 2
    不同预应力 F1 15 1 2.5 0.8 1.5 0
    F2 30
    F3 60
    F4 90
    F5 120
    下载: 导出CSV

    表  2  不同原岩强度等级模拟方案

    Table  2.   Simulation schemes of different original rock strength grades

    编号 原岩强度等级B 弹性模量
    E/MPa
    黏聚力
    c/MPa
    内摩擦角
    φ/(°)
    不变量
    B1 0.8 2 000 1.20 24.79 密度2 200 kg/m3
    泊松比0.27
    抗拉强度0.5 MPa
    地应力15 MPa
    B2 0.9 2 250 1.35 27.46
    B3 1.0 2 500 1.50 30.00
    B4 1.1 2 750 1.65 33.15
    B5 1.2 3 000 1.80 34.71
    下载: 导出CSV

    表  3  不同注浆强化指数模拟方案

    Table  3.   Different simulation schemes of grouting strengthening index

    编号 注浆强化指数C 弹性模量E/MPa 黏聚力c/MPa 内摩擦角φ/(°) 抗拉强度/MPa 不变量
    E1 1.00 2 500 1.500 30.00 0.500 密度2 200 kg/m3
    泊松比0.27
    地应力15 MPa
    E2 1.25 3 125 1.875 35.82 0.625
    E3 1.50 3 750 2.250 40.90 0.750
    E4 1.75 4 375 2.265 45.30 0.875
    E5 2.00 5 000 3.000 49.11 1.000
    下载: 导出CSV
  • [1] KANG H, WU Y, GAO F, et al. Fracture characteristics in rock bolts in underground coal mine roadways[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 105-112. doi: 10.1016/j.ijrmms.2013.04.006
    [2] 郑雨天, 朱浮声. 预应力锚杆体系-锚杆支护技术发展的新阶段[J]. 矿山压力与顶板管理, 1995, 12(1): 2-7.

    ZHENG Yutian, ZHU Fusheng. Prestressed bolting system-new development stage of bolting technology[J]. Ground Pressure and Strata Control, 1995, 12(1): 2-7.
    [3] 翟英达. 多裂隙围岩中锚固结构形成的力学机理[J]. 煤炭学报, 2011, 36(9): 1435-1439.

    ZHAI Yingda. Mechanical mechanism of bolted structure forming in strong fissured surrounding rock[J]. Journal of China Coal Society, 2011, 36(9): 1435-1439.
    [4] 郑西贵, 张农, 薛飞. 预应力锚杆锚固段应力分布规律及分析[J]. 采矿与安全工程学报, 2012, 29(3): 365-370.

    ZHENG Xigui, ZHANG Nong, XUE Fei. Study on stress distribution law in anchoring section of prestressed bolt[J]. Journal of Mining & Safety Engineering, 2012, 29(3): 365-370.
    [5] 王洪涛, 王琦, 王富奇, 等. 不同锚固长度下巷道锚杆力学效应分析及应用[J]. 煤炭学报, 2015, 40(3): 509-515.

    WANG Hongtao, WANG Qi, WANG Fuqi, et al. Mechanical effect analysis of bolts in roadway under different anchoring lengths and its application[J]. Journal of China Coal Society, 2015, 40(3): 509-515.
    [6] INDRARATNA B, KAISER P K. Analytical model for the design of grouted rock bolts[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(4): 227-251. doi: 10.1002/nag.1610140402
    [7] LI C, STILLBORG B. Analytical models for rock bolts[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(8): 1013-1029. doi: 10.1016/S1365-1609(99)00064-7
    [8] CAI Y, ESAKI T, JIANG Y. An analytical model to predict axial load in grouted rock bolt for soft rock tunnel-ling[J]. Tunnelling and Underground Space Technology, 2004, 19(6): 607-618. doi: 10.1016/j.tust.2004.02.129
    [9] OSGOUI R R, ORESTE P. Elasto-plastic analytical model for the design of grouted bolts in a Hoek-Brown medium[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34 (16): 1651-1686. doi: 10.1002/nag.823
    [10] BOBET A, EINSTEIN H H. Tunnel reinforcement with rock bolts[J]. Tunnelling and Underground Space Technology, 2011, 26(1): 100-123. doi: 10.1016/j.tust.2010.06.006
    [11] WANG Q, QIN Q, JIANG B, et al. Study and engineering application on the bolt-grouting reinforcement effect in underground engineering with fractured surrounding rock[J]. Tunnelling and Underground Space Technology, 2019, 84: 237-247. doi: 10.1016/j.tust.2018.11.028
    [12] 潘锐, 王琦, 王雷, 等. 深井巷道锚注补强力学效应及支护参数研究[J]. 采矿与安全工程学报, 2018, 35(2): 267-275.

    PAN Rui, WANG Qi, WANG Lei, et al. Research on mechanical effect and parameters of bolt-grouting reinforcement for deep roadway[J]. Journal of Mining & Safety Engineering, 2018, 35(2): 267-275.
    [13] 王琦, 许英东, 许硕, 等. 破碎围岩锚注扩散加固机制研究与应用[J]. 采矿与安全工程学报, 2019, 36(5): 916-923.

    WANG Qi, XU Yingdong, XU Shuo, et al. Study and application of bolt-grouting slurry diffusion and reinforcement mechanism in broken surrounding rock[J]. Journal of Mining & Safety Engineering, 2019, 36(5): 916-923.
    [14] 张妹珠, 江权, 王雪亮, 等. 破裂大理岩锚注加固试样的三轴压缩试验及加固机制分析[J]. 岩土力学, 2018, 39(10): 3651-3660.

    ZHANG Meizhu, JIANG Quan, WANG Xueliang, et al. Triaxial compression test and strengthening mechanism analysis of cracked marble specimens with bolting-grouting reinforcement[J]. Rock and Soil Mechanics, 2018, 39(10): 3651-3660.
    [15] 周波, 袁亮, 薛生, 等. 断层带破碎煤巷围岩锚注预强化技术[J]. 采矿与安全工程学报, 2018, 35(3): 509-516.

    ZHOU Bo, YUAN Liang, XUE Sheng, et al. Pre-strengthening technology of bolt-grouting in broken coal roadway in fault zone[J]. Journal of Mining & Safety Engineering, 2018, 35(3): 509-516.
    [16] 康红普, 姜鹏飞, 杨建威, 等. 煤矿千米深井巷道松软煤体高压锚注-喷浆协同控制技术[J]. 煤炭学报, 2021, 46(3): 747-762.

    KANG Hongpu, JIANG Pengfei, YANG Jianwei, et al. Roadway soft coal control technology by means of grouting bolts with high pressure-shotcreting in synergy in more than 1 000 m deep coal mines[J]. Journal of China Coal Society, 2021, 46(3): 747-762.
    [17] 孟庆彬, 韩立军, 乔卫国, 等. 深部软岩巷道锚注支护机理数值模拟研究[J]. 采矿与安全工程学报, 2016, 33(1): 27-34.

    MENG Qingbin, HAN Lijun, QIAO Weiguo, et al. Numerical simulation research of bolt-grouting supporting mechanism in deep soft rock roadway[J]. Journal of Mining & Safety Engineering, 2016, 33(1): 27-34.
    [18] 王洪涛, 王琦, 蒋敬平, 等. 深部巷道全长预应力锚注支护机理研究及应用[J]. 采矿与安全工程学报, 2019, 36(4): 670-677, 684.

    WANG Hongtao, WANG Qi, JIANG Jingping, et al. Supporting mechanism and application of full-length prestressed bolt-grouting in the deep roadways[J]. Journal of Mining & Safety Engineering, 2019, 36(4): 670-677, 684.
    [19] 王晓卿, 康红普, 赵科, 等. 黏结刚度对预应力锚杆支护效用的数值分析[J]. 煤炭学报, 2016, 41(12): 2999-3007.

    WANG Xiaoqing, KANG Hongpu, ZHAO Ke, et al. Numerical analysis of bonding stiffness for support effectiveness of pre-stressed bolts[J]. Journal of China Coal Society, 2016, 41(12): 2999-3007.
  • 加载中
图(26) / 表(3)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  60
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-04
  • 修回日期:  2023-08-04
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回