留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力波作用下红砂岩复合动态断裂特征研究

解北京 李晓旭 栾铮 陈思羽 陈铭进 梁天宇

解北京, 李晓旭, 栾铮, 陈思羽, 陈铭进, 梁天宇. 应力波作用下红砂岩复合动态断裂特征研究[J]. 矿业科学学报, 2024, 9(1): 42-52. doi: 10.19606/j.cnki.jmst.2024.01.005
引用本文: 解北京, 李晓旭, 栾铮, 陈思羽, 陈铭进, 梁天宇. 应力波作用下红砂岩复合动态断裂特征研究[J]. 矿业科学学报, 2024, 9(1): 42-52. doi: 10.19606/j.cnki.jmst.2024.01.005
XIE Beijing, LI Xiaoxu, LUAN Zheng, CHEN Siyu, CHEN Mingjin, LIANG Tianyu. Study on the dynamic fracture characteristics of red sandstone composite under stress waves[J]. Journal of Mining Science and Technology, 2024, 9(1): 42-52. doi: 10.19606/j.cnki.jmst.2024.01.005
Citation: XIE Beijing, LI Xiaoxu, LUAN Zheng, CHEN Siyu, CHEN Mingjin, LIANG Tianyu. Study on the dynamic fracture characteristics of red sandstone composite under stress waves[J]. Journal of Mining Science and Technology, 2024, 9(1): 42-52. doi: 10.19606/j.cnki.jmst.2024.01.005

应力波作用下红砂岩复合动态断裂特征研究

doi: 10.19606/j.cnki.jmst.2024.01.005
基金项目: 

国家重点研发计划 2022YFC2904100

中央高校基本科研业务费专项资金 2023ZKPYAQ04

安徽省爆破器材与技术工程实验室 AHBP2022A-03

详细信息
    作者简介:

    解北京(1984—),男,安徽滁州人,博士,副教授,主要从事矿井瓦斯灾害防治、煤岩动力灾害防治等方面的研究工作。Tel:15201290493,E-mail:bjxie1984@cumtb.edu.cn

  • 中图分类号: TD315

Study on the dynamic fracture characteristics of red sandstone composite under stress waves

  • 摘要: 为探究应力波作用下红砂岩的复合动态断裂特性,采用分离式霍普金森压杆和数字图像技术对带预制裂缝的半圆盘三点弯曲试样开展冲击加载实验,分析加载率、波长对红砂岩动态拉伸、断裂特征的影响。结果表明:①红砂岩试样加载率与动态抗拉强度、断裂韧度及破坏率均呈一次函数关系;断裂能随加载率增大而增长415.27 %。②随着波长增加,动态抗拉强度增长742.14 %,其中断裂能增长54.49 %,但能量吸收率呈下降趋势;裂纹扩展平均速度增长4.09 %,且首尾裂纹应变增长时间出现滞后现象;破坏率增长效应得到强化。③冲击速度8 m/s时试件主裂纹首尾监测点位的应变平均增加84.31 %。
  • 图  1  SCB试样

    Figure  1.  Semi-circular bending specimens

    图  2  SHPB实验系统

    Figure  2.  SHPB experimental device

    图  3  应力平衡验证

    Figure  3.  Verification of stress balance

    图  4  不同长度子弹在相同冲击速度下的波形

    Figure  4.  Waveforms of different bullets

    图  5  拉伸应力时程曲线

    Figure  5.  Tensile stress time-history curve

    图  6  加载率效应曲线

    Figure  6.  Loading rate effect curve

    图  7  动态断裂韧度-加载率关系

    Figure  7.  Dynamic fracture toughness loading rate relationship

    图  8  不同波长冲击下SCB试件时间-转动角度

    Figure  8.  Time-rotation angle of SCB specimens under different wavelength

    图  9  不同加载率下SCB试件时间-转动角度

    Figure  9.  Time-rotation angle of SCB specimens under impacts of different loading rate

    图  10  波长-能量关系

    Figure  10.  Wavelength-energy relationship

    图  11  加载率-能量关系

    Figure  11.  Loading rate-energy relationship

    图  12  试样破坏前后照片

    Figure  12.  Photos before and after sample damage

    图  13  不同冲击速度下垂直方向应变云图

    Figure  13.  Vertical strain nephogram under different velocities

    图  14  不同冲击速度下监测点应变时程曲线

    Figure  14.  Time course of strain at monitoring points under impacts of different velocities

    图  15  裂纹扩展应变片的粘贴

    Figure  15.  Adhesion of crack extension strain gauges

    图  16  裂纹扩展应变片电压时程曲线

    Figure  16.  Voltage time history curve

    图  17  不同波长下裂纹扩展速度-距离曲线

    Figure  17.  Crack propagation velocity-distance curves at different wavelengths

    图  18  波长-冲击速度破坏形态

    Figure  18.  Wavelength-impact velocity damage pattern

    图  19  试样破坏形态素描图

    Figure  19.  Sketch of the damage pattern of the specimen

    图  20  破坏率与冲击速度关系

    Figure  20.  Relationship between damage rate impact velocity

  • [1] MODIRIASARI A, BOBET A, PYRAK-NOLTE L J. Active seismic monitoring of crack initiation, propagation, and coalescence in rock[J]. Rock Mechanics and Rock Engineering, 2017, 50(9): 2311-2325. doi: 10.1007/s00603-017-1235-x
    [2] GONG S. Investigation of tensile and fracture mechanical properties of bituminous coal at different strain rates[J]. Journal of Materials Research and Technology, 2021, 15: 834-845. doi: 10.1016/j.jmrt.2021.08.076
    [3] LI J C, YUAN W, LI H B, et al. Study on dynamic shear deformation behaviors and test methodology of sawtooth-shaped rock joints under impact load[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 158: 105210. doi: 10.1016/j.ijrmms.2022.105210
    [4] 张盛, 王启智. 用变裂缝单一尺寸试样确定大理岩的断裂韧度[J]. 工程力学, 2007, 24(6): 31-35.

    ZHANG Sheng, WANG Qizhi. Determination of marble fracture toughness by using variable-crack one-size specimens[J]. Engineering Mechanics, 2007, 24(6): 31-35.
    [5] 张盛, 王启智, 梁亚磊. 裂缝长度对岩石动态断裂韧度测试值影响的研究[J]. 岩石力学与工程学报, 2009, 28(8): 1691-1696.

    ZHANG Sheng, WANG Qizhi, LIANG Yalei. Research on influence of crack length on test values of rock dynamic fracture toughness[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1691-1696.
    [6] 宋义敏, 何爱军, 王泽军, 等. 冲击载荷作用下岩石动态断裂试验研究[J]. 岩土力学, 2015, 36(4): 965-970.

    SONG Yimin, HE Aijun, WANG Zejun, et al. Experiment study of the dynamic fractures of rock under impact loading[J]. Rock and Soil Mechanics, 2015, 36(4): 965-970.
    [7] 宋义敏, 杨小彬, 杨晟萱, 等. 冲击载荷下岩石裂纹动态断裂参数研究[J]. 采矿与安全工程学报, 2015, 32(5): 834-839.

    SONG Yimin, YANG Xiaobin, YANG Shengxuan, et al. The research of rock dynamic fracture parameter under the action of impact load[J]. Journal of Mining & Safety Engineering, 2015, 32(5): 834-839.
    [8] 李地元, 刘濛, 韩震宇, 等. 含孔洞层状砂岩动态压缩力学特性试验研究[J]. 煤炭学报, 2019, 44(5): 1349-1358.

    LI Diyuan, LIU Meng, HAN Zhenyu, et al. Dynamic compressive mechanical properties of bedding sandstone with pre-existing hole[J]. Journal of China Coal Society, 2019, 44(5): 1349-1358.
    [9] 龚爽, 赵毅鑫, 周磊, 等. 冲击荷载作用下含双孔洞裂纹石灰岩动态断裂行为[J]. 煤炭学报, 2023, 48(8): 3030-3047.

    GONG Shuang, ZHAO Yixin, ZHOU Lei, et al. Dynamic fracture behavior of limestone specimens containing double holes and crack under impact loading[J]. Journal of China Coal Society, 2023, 48(8): 3030-3047.
    [10] DAI F, CHEN R, XIA K. A semi-circular bend technique for determining dynamic fracture toughness[J]. Experimental Mechanics, 2010, 50(6): 783-791. doi: 10.1007/s11340-009-9273-2
    [11] DAI F, XIA K, ZHENG H, et al. Determination of dynamic rock Mode-Ⅰ fracture parameters using cracked chevron notched semi-circular bend specimen[J]. Engineering Fracture Mechanics, 2011, 78(15): 2633-2644. doi: 10.1016/j.engfracmech.2011.06.022
    [12] DAI F, XIA K W. Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 57-65. doi: 10.1016/j.ijrmms.2012.12.035
    [13] LI Y, YANG S Q, LI Y. Experiment and numerical simulation on cracking behavior of marble containing double elliptic holes under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2021, 112: 102928. doi: 10.1016/j.tafmec.2021.102928
    [14] 武宇, 刘殿书, 吴帅峰, 等. 砂岩冲击损伤与应力波参数关系试验研究[J]. 矿业科学学报, 2018, 3(3): 229-237. http://kykxxb.cumtb.edu.cn/article/id/142

    WU Yu, LIU Dianshu, WU Shuaifeng, et al. Experimental study on relationship between impact damage of sandstone and stress wave parameters[J]. Journal of Mining Science and Technology, 2018, 3(3): 229-237. http://kykxxb.cumtb.edu.cn/article/id/142
    [15] 李成孝, 张渊通, 安晨. 单侧开半圆孔PMMA试件Ⅰ型和Ⅰ-Ⅱ混合型裂纹动态扩展及数值模拟研究[J]. 矿业科学学报, 2020, 5(5): 490-501. doi: 10.19606/j.cnki.jmst.2020.05.003

    LI Chengxiao, ZHANG Yuantong, AN Chen. Study on the dynamic propagation and numerical simulation of mode Ⅰ and mixed mode Ⅰ-Ⅱ cracks in PMMA specimens with unilateral semicircular holes[J]. Journal of Mining Science and Technology, 2020, 5(5): 490-501. doi: 10.19606/j.cnki.jmst.2020.05.003
    [16] KURUPPU M D, OBARA Y, AYATOLLAHI M R, et al. ISRM-suggested method for determining the mode Ⅰ static fracture toughness using semi-circular bend specimen[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 267-274. doi: 10.1007/s00603-013-0422-7
    [17] 解北京, 栾铮, 陈冬新, 等. 不同长径比煤样动力学特征及本构模型[J]. 矿业科学学报, 2023, 8(2): 190-201. doi: 10.19606/j.cnki.jmst.2023.02.006

    XIE Beijing, LUAN Zheng, CHEN Dongxin, et al. Dynamic characteristics and constitutive model of coal samples with different length diameter ratio[J]. Journal of Mining Science and Technology, 2023, 8(2): 190-201. doi: 10.19606/j.cnki.jmst.2023.02.006
    [18] 解北京, 栾铮, 刘天乐, 等. 静水压下原生组合煤岩动力学破坏特征[J]. 煤炭学报, 2023, 48(5): 2153-2167.

    XIE Beijing, LUAN Zheng, LIU Tianle, et al. Dynamic failure characteristics of primary coal-rock combination under hydrostatic pressure[J]. Journal of China Coal Society, 2023, 48(5): 2153-2167.
    [19] 王礼立. 应力波基础[M]. 北京: 国防工业出版社, 1985.

    WANG Lili. Stress wave foundation[M]. Beijing: National Defense Industry Press, 1985.
    [20] 尹土兵. 考虑温度效应的岩石动力学行为研究[D]. 长沙: 中南大学, 2012.

    YIN Tubing. Study on dynamic behavior of rocks considering thermai, effect[D]. Changsha: Central South University, 2012.
    [21] 凌天龙, 刘殿书, 梁书锋, 等. 花岗岩损伤型黏弹性动态本构模型研究[J]. 矿业科学学报, 2019, 4(5): 403-409. http://kykxxb.cumtb.edu.cn/article/id/239

    LING Tianlong, LIU Dianshu, LIANG Shufeng, et al. Research on damage viscoelastic dynamic constitutive model of granite[J]. Journal of Mining Science and Technology, 2019, 4(5): 403-409. http://kykxxb.cumtb.edu.cn/article/id/239
    [22] 平琦, 马芹永, 袁璞. 岩石试件SHPB劈裂拉伸试验中能量耗散分析[J]. 采矿与安全工程学报, 2013, 30(3): 401-407.

    PING Qi, MA Qinyong, YUAN Pu. Energy dissipation analysis of stone specimens in SHPB tensile test[J]. Journal of Mining & Safety Engineering, 2013, 30(3): 401-407.
    [23] XIA K W, YAO W. Dynamic rock tests using split Hopkinson(Kolsky) bar system—A review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1): 27-59. doi: 10.1016/j.jrmge.2014.07.008
    [24] KURUPPU M D, CHONG K P. Fracture toughness testing of brittle materials using semi-circular bend(SCB) specimen[J]. Engineering Fracture Mechanics, 2012, 91: 133-150. doi: 10.1016/j.engfracmech.2012.01.013
    [25] 骆浩浩, 张渊通, 左进京, 等. 冲击荷载下运动裂纹与空孔相互作用的焦散线试验研究[J]. 矿业科学学报, 2022, 7(2): 210-216. doi: 10.19606/j.cnki.jmst.2022.02.008

    LUO Haohao, ZHANG Yuantong, ZUO Jinjing, et al. Caustics experimental study on the interaction between moving cracks and voids under impact loading[J]. Journal of Mining Science and Technology, 2022, 7(2): 210-216. doi: 10.19606/j.cnki.jmst.2022.02.008
    [26] AYATOLLAHI M R, ALIHA M R M. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading[J]. Computational Materials Science, 2007, 38(4): 660-670. doi: 10.1016/j.commatsci.2006.04.008
    [27] AYATOLLAHI M R, ALIHA M R M. Fracture toughness study for a brittle rock subjected to mixed mode Ⅰ/Ⅱ loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 617-624. doi: 10.1016/j.ijrmms.2006.10.001
    [28] 解北京, 于瑞星, 陈冬新, 等. 动载下石灰岩能耗指标影响因素研究[J]. 中国安全生产科学技术, 2022, 18(11): 62-70.

    XIE Beijing, YU Ruixing, CHEN Dongxin, et al. Study on influencing factors of energy consumption index of limestone under dynamic load[J]. Journal of Safety Science and Technology, 2022, 18(11): 62-70.
    [29] 杨国梁, 毕京九, 张志飞, 等. 被动围压下层理角度对页岩动态强度及耗能的影响[J]. 矿业科学学报, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006

    YANG Guoliang, BI Jingjiu, ZHANG Zhifei, et al. The influence of the bedding angle under passive confining pressure on the dynamic strength and energy consumption of shale[J]. Journal of Mining Science and Technology, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006
    [30] 陈骏, 张祥, 赵康朴, 等. 初始应力状态对侧限条件黏土动态压缩过程和力学性能的影响[J]. 工程科学与技术, 2023, 55(3): 69-76.

    CHEN Jun, ZHANG Xiang, ZHAO Kangpu, et al. Effect of initial stress state on dynamic compression process and mechanical properties of clay under lateral restriction conditions[J]. Advanced Engineering Sciences, 2023, 55(3): 69-76.
  • 加载中
图(20)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  30
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 修回日期:  2023-11-01
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回