留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矸石精确产酸潜力评价方法对比研究

孙红福 阴祥诚 孙朗 赵峰华 朱孟浩 范紫仪

孙红福, 阴祥诚, 孙朗, 赵峰华, 朱孟浩, 范紫仪. 煤矸石精确产酸潜力评价方法对比研究[J]. 矿业科学学报, 2024, 9(1): 13-21. doi: 10.19606/j.cnki.jmst.2024.01.002
引用本文: 孙红福, 阴祥诚, 孙朗, 赵峰华, 朱孟浩, 范紫仪. 煤矸石精确产酸潜力评价方法对比研究[J]. 矿业科学学报, 2024, 9(1): 13-21. doi: 10.19606/j.cnki.jmst.2024.01.002
SUN Hongfu, YIN Xiangcheng, SUN Lang, ZHAO Fenghua, ZHU Menghao, FAN Ziyi. Comparative study on evaluation methods of accurate acid production potential of coal gangue[J]. Journal of Mining Science and Technology, 2024, 9(1): 13-21. doi: 10.19606/j.cnki.jmst.2024.01.002
Citation: SUN Hongfu, YIN Xiangcheng, SUN Lang, ZHAO Fenghua, ZHU Menghao, FAN Ziyi. Comparative study on evaluation methods of accurate acid production potential of coal gangue[J]. Journal of Mining Science and Technology, 2024, 9(1): 13-21. doi: 10.19606/j.cnki.jmst.2024.01.002

煤矸石精确产酸潜力评价方法对比研究

doi: 10.19606/j.cnki.jmst.2024.01.002
基金项目: 

国家自然科学基金 40972110

国家自然科学基金 41102096

大学生创新计划 202302034

详细信息
    作者简介:

    孙红福(1977—),男,河南鹤壁人,博士,副教授,主要从事矿山酸性水预测、防治和利用等方面的研究工作。E-mail:shf_cumtb@163.com

    通讯作者:

    赵峰华(1969—),男,山西晋中人,博士,教授,主要从事煤田地质学、环境地球化学等方面的研究工作。E-mail:zfh@cumtb.edu.cn

  • 中图分类号: TD74

Comparative study on evaluation methods of accurate acid production potential of coal gangue

  • 摘要: 为有效避免重大酸性水污染事故,需提高矿山岩石产酸潜力评价的精度。通过全面阐述矸石中常见含硫矿物的产酸潜力计算方法,采用三步连续提取法测定了多个矿石和煤矸石中产酸矿物的硫含量,对比分析了精确产酸潜力和最大产酸潜力。结果表明:煤矸石的产酸潜力值取决于各产酸硫的质量分数和单位硫产酸值;对大部分样品,用产酸硫含量计算的产酸潜力值不同程度地低于用全硫预测的产酸潜力值;样品SC中的硫成分主要为砷黄铁矿硫,相比黄铁矿的单位硫产酸值更高,导致SC样品计算的精确产酸潜力相比全硫预测的产酸潜力更高;三步连续提取法适用于以铁和铜的硫化物为主要含硫矿物的煤矸石;当矿石中其他硫化物成分增多和空白样品混合不均匀都会对结果产生一定干扰。研究结果为准确评价矿区煤矸石精确产酸潜力提供了依据。
  • 图  1  三步连续提取法流程

    Figure  1.  Three-step sequential extraction

    图  2  10个样品的XRD图谱

    Q—石英;L—伊利石;K—高岭石;Py—黄铁矿;S—菱铁矿;D—白云石;Pol—多硅锂云母;Mgr—硒砷铜矿;G—方铅矿;Ars—砷黄铁矿;Po—磁黄铁矿;sp—闪锌矿;B—斑铜矿;Ch—黄铜矿;Cas—锡石;C—方解石;H—赤铁矿

    Figure  2.  XRD patterns of ten samples

    图  3  各步骤“实测硫损失值/计算总硫值”

    Figure  3.  Measured sulfur loss value/calculated total sulfur value in each step

    图  4  样品的两种产酸潜力比较

    Figure  4.  Comparison of acid production potential PPA and MPA of each sample

    表  1  常见含硫矿物每摩尔硫的产酸系数[18]

    Table  1.   Acid production coefficient per mole of sulfur produced by common sulfur-containing minerals[18]

    含硫矿物 pH近中性下的理论终产物 单位硫产酸系数 相对黄铁矿的产酸倍数
    FeS2和Fe1-xS Fe(OH)3,H+,SO42- 2 1
    FeAsS Fe(OH)3,H+
    SO42-,HAsO42-
    4 2
    ZnS Zn2+,SO42- 0 0
    PbS Pb2+,SO42- 0 0
    CuFeS2 Fe(OH)3,H+,SO42-
    Cu(OH)2,Cu2+
    1~2 0.5~1
    MoS2 MoO42-
    SO42-,H+
    3 1.5
    FeSO4·7H2O Fe(OH)3,H+
    SO42-,H2O
    2 1
    KFe3(SO4)2
    (OH)6
    K+,Fe(OH)3
    H+,SO42-
    1.5 0.75
    下载: 导出CSV

    表  2  XRD检测结果

    Table  2.   XRD test results of samples

    样品编号 矿物成分
    MGS 石英、高岭石、菱铁矿
    WJL 石英、高岭石、伊利石、黄铁矿
    HB 石英、白云石、菱铁矿
    HN 石英、高岭石
    SC 石英、高岭石、砷黄铁矿、磁黄铁矿、砷铜矿
    KW1 石英、菱铁矿、磁黄铁矿、黄铁矿
    KW2 方解石、黄铁矿
    KW3 石英、斑铜矿、赤铁矿
    KW4 黄铜矿、锡石
    KW5 方铅矿、闪锌矿
    下载: 导出CSV

    表  3  硫测定结果占原样的质量分数

    Table  3.   The ratio of sulfur determination results to the mass of the original sample %

    样品编号 艾士卡全硫 碳硫仪全硫 全硫 水萃取后总硫 焙烧后总硫 酸萃取后总硫
    MGS 0.217 0.565 0.565 0.511 0.641
    WJL 3.131 2.411 2.411 4.334 0.058
    HB 0.087 0.203 0.203 0.225 0.581
    HN 2.039 2.248 2.248 1.602 0.086
    SC 8.189 10.277 8.189 7.806 2.739 2.233
    KW1 2.780 2.613 2.613 2.360 0.272 0.099
    KW2 1.823 3.000 3.000 2.988 0.443 0.486
    KW3 0.657 1.111 1.111 1.105 0.702 0.329
    KW4 0.459 1.793 1.793 1.756 0.672 0.111
    KW5 0.945 1.257 1.257 1.201 1.166 0.941
    注:MGS、WJL、HB样品未采用。
    下载: 导出CSV

    表  4  水萃取液ICP测定结果

    Table  4.   ICP determination results of water extraction mg/L

    样品编号 Fe Mg Ca S
    LHN 0.008 1.216 2.664 5.447
    LSC 0.410 4.237 4.340 9.693
    LKW1 0.695 0.322 0.704 1.579
    LKW2 0.052 0.273 1.127 1.286
    LKW3 0.002 0.230 0.691 0.141
    LKW4 0.002 0.239 2.317 1.209
    LKW5 0.009 0.255 0.687 0.335
    下载: 导出CSV

    表  5  盐酸萃取液ICP测定结果

    Table  5.   ICP determination results of hydrochloric acid extraction mg/L

    样品编号 Fe S Cu Li As K
    LHN 4.377 4.146 1.927
    LSC 79.551 12.994 0.080 1.168 63.649
    LKW1 6.337 3.419
    LKW2 4.801 2.017
    LKW3 3.429 7.871 38.416
    LKW4 8.453 11.013 23.424
    LKW5 2.644 3.868
    下载: 导出CSV

    表  6  各步骤中硫占原样的质量分数

    Table  6.   The ratio of sulfur loss in each step to the mass of the original sample %

    各步骤中的硫质量分数 HN SC KW1 KW2 KW3 KW4 KW5
    全硫 2.248 8.189 2.613 3.000 1.111 1.793 1.257
    平行样-水萃取后总硫 1.602 7.806 2.360 2.988 1.105 1.756 1.201
    ICP-水萃取硫 0.022 0.039 0.006 0.005 0.001 0.005 0.001
    计算总硫(非测定值) 1.624 7.845 2.366 2.993 1.106 1.761 1.202
    焙烧损失硫 1.516 5.067 2.088 2.545 0.403 1.084 0.035
    ICP-酸萃取硫 0.166 0.520 0.137 0.080 0.315 0.441 0.155
    残余硫 未测定 2.233 0.099 0.486 0.329 0.111 0.941
    累加硫(非测定值) 1.704 7.859 2.330 3.116 1.048 1.641 1.132
    下载: 导出CSV

    表  7  各步骤“实测硫损失值/计算总硫值”

    Table  7.   Measured sulfur loss value/calculated total sulfur value in each step %

    各步骤硫的损失/计算总硫 HN SC KW1 KW2 KW3 KW4 KW5
    ICP-水萃取硫/计算总硫 1.35 0.50 0.25 0.17 0.10 0.28 0.10
    焙烧损失硫/计算总硫 93.34 64.59 88.25 85.03 36.44 61.55 2.91
    ICP-酸萃取硫/计算总硫 10.22 6.63 5.79 2.67 28.48 25.04 12.90
    残余硫/计算总硫 0.00 28.46 4.18 16.24 29.75 6.30 78.29
    累加硫/计算总硫 104.91 100.18 98.47 104.11 94.77 93.17 94.20
    下载: 导出CSV

    表  8  三种提取方法对10个单一成分含硫矿物的提取效果[15]

    Table  8.   Extraction effects by the three extraction methods on 10 single-component sulfur-containing minerals[15]

    含硫矿物* 4 mol/L HCl
    16 h
    550 ℃焙烧
    1 h
    550
    ℃焙烧1 h +
    4 mol/L HCl(0.5 h)
    萃取/损失的硫/%
    黄钾铁矾 90 100
    黄铁矿 0 100
    砷黄铁矿 8 100
    闪锌矿 24 5 8
    磁黄铁矿 62 86 95
    方铅矿 76 1 15
    铜蓝 11 50 97
    辉铜矿 15 20 85
    斑铜矿 21 35 95
    黄铜矿 33 45 95
    * 由对应含硫矿物(5 %)和石英(95 %)组成。
    下载: 导出CSV
  • [1] 赵峰华, 孙红福, 刘乃利. 煤系岩石产酸潜力的索氏淋滤实验评价[J]. 中国矿业大学学报, 2013, 42(2): 214-220.

    ZHAO Fenghua, SUN Hongfu, LIU Naili. Evaluation of Soxhlet leaching experiment of acid-producing potential of rock from coal-bearing measures[J]. Journal of China University of Mining & Technology, 2013, 42(2): 214-220.
    [2] 王晨昇, 姜大伟, 胡格吉乐吐, 等. 矿山酸性废水预测评价方法[J]. 矿产勘查, 2019, 10(3): 690-694.

    WANG Chensheng, JIANG Dawei, HU Gejiletu, et al. An overview of the methods of acid mine drainage prediction and evaluation[J]. Mineral Exploration, 2019, 10(3): 690-694.
    [3] 赵峰华, 孙红福, 刘乃利, 等. 含煤岩系岩石静态产酸潜力综合评价[J]. 地球科学, 2014, 39(3): 350-356.

    ZHAO Fenghua, SUN Hongfu, LIU Naili, et al. Evaluation of static acid production potential for coal bearing formation[J]. Earth Science, 2014, 39(3): 350-356.
    [4] 国家质量监督检验检疫总局、中国国家标准化管理委员会. 煤中全硫的测定方法: GB/T 214—2007[S]. 北京: 中国标准出版社, 2008.
    [5] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 铜矿石、铅矿石和锌矿石化学分析方法第12部分: 硫量测定: GB/T 14353.12—2010[S]. 北京: 中国标准出版社, 2011.
    [6] 国家质量监督检验检疫总局. 煤中各种形态硫的测定方法: GB/T 215—2003[S]. 北京: 中国标准出版社, 2003.
    [7] 李薇薇. 湖南辰溪特高有机硫煤的地球化学特征与硫的成因[D]. 北京: 中国矿业大学(北京), 2013.

    LI Weiwei. Geochemistry of super-high-organic-sulfur coals from Chenxi, Hunan and geological origin of the sulfur[D]. China University of Mining and Technology(Beijing), 2013: 2.
    [8] TUTTLE M, BRIGGS P, BERRY C J. A method to separate phases of sulphur in mine-waste piles and natural alteration zones, and to use sulphur isotopic compositions to investigate release of metals and acidity to the environment[C]. Cairns, Australia: 6th International Conference on Acid Rock Drainage, 2003.
    [9] SCHUMANN R, STEWART W, MILLER S, et al. Acid-base accounting assessment of mine wastes using the chromium reducible sulfur method[J]. Science of the Total Environment, 2012, 424: 289-296. doi: 10.1016/j.scitotenv.2012.02.010
    [10] BURTON E D, SULLIVAN L A, BUSH R T, et al. A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils[J]. Applied Geochemistry, 2008, 23(9): 2759-2766. doi: 10.1016/j.apgeochem.2008.07.007
    [11] STEWART W, SCHUMAN R, MILLER S, et al. Development of prediction methods for ARD assessment of coal process wastes[C]. Skelleftea, Sweden: 8th International Conference on Acid Rock Drainage, 2009.
    [12] TUTTLE M L, GOLDHABER M B, WILLIAMSON D L. An analytical scheme for determining forms of sulphur in oil shales and associated rocks[J]. Talanta, 1986, 33(12): 953-961. doi: 10.1016/0039-9140(86)80234-X
    [13] ÇELEBI E E, RIBEIRO J. Prediction of acid production potential of self-combusted coal mining wastes from Douro Coalfield(Portugal) with integration of mineralogical and chemical data[J]. International Journal of Coal Geology, 2023, 265: 104152.
    [14] MOYO A, DO AMARAL FILHO J R, HARRISON S T L, et al. Implications of sulfur speciation on the assessment of acid rock drainage generating potential: a study of South African coal processing wastes[J]. Minerals, 2019, 9(12): 776. doi: 10.3390/min9120776
    [15] LI J, SMART R S, SCHUMANN R C, et al. A simplified method for estimation of jarosite and acid-forming sulfates in acid mine wastes[J]. The Science of the Total Environment, 2007, 373(1): 391-403. doi: 10.1016/j.scitotenv.2006.11.012
    [16] WILLIAM A. Prediction manual for drainage chemistry from sulphidic geologic materials[M]. Canada: Nature Resources Canada, 2009.
    [17] 曹丽娜, 陈炳辉. 不同环境下AMD的次生矿物及其意义[C]//. 2018第四届能源, 环境与地球科学国际会议论文集. 西安:

    ICEEES, 2018: 64-71.
    [18] DOLD B. Acid rock drainage prediction: a critical review[J]. Journal of Geochemical Exploration, 2017, 172: 120-132. doi: 10.1016/j.gexplo.2016.09.014
    [19] 钟晶洁, 石桂金, 赵晓龙. 红外法与库仑滴定法测定煤中全硫探讨[J]. 山东化工, 2016, 45(19): 62-63, 65.

    ZHONG Jingjie, SHI Guijin, ZHAO Xiaolong. Discussion on determination of total sulfur in coal by infrared method and coulometric titration[J]. Shandong Chemical Industry, 2016, 45(19): 62-63, 65.
    [20] 陈鹏, 徐晓阳, 何如榕. 热解硫光化学法检测煤中有机硫类型[J]. 煤炭科学技术, 1997, 25(1): 14-17, 59.

    CHEN Peng, XU Xiaoyang, HE Rurong. Pyrolysis sulfur optical chemical method applied to measure organic sulfur type in coal[J]. Coal Science and Technology, 1997, 25(1): 14-17, 59.
    [21] 张明旭, 栗元龙. 程控升温燃烧法快速测定煤中硫的形态和数量[J]. 中国矿业大学学报, 2001, 30(6): 617-619.

    ZHANG Mingxu, LI Yuanlong. Fast determination of sulphur forms and quantity in coal using program-controlled temperature-increasing[J]. Journal of China University of Mining & Technology, 2001, 30(6): 617-619.
    [22] 刘华, 谢灵芝, 李健. 测定煤中不同形态硫应注意的几个问题[J]. 内蒙古煤炭经济, 2010(4): 111-113.

    LIU Hua, XIE Lingzhi, LI Jian. Several problems to be paid attention to in the determination of different forms of sulfur in coal[J]. Inner Mongolia Coal Economy, 2010(4): 111-113.
  • 加载中
图(4) / 表(8)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  30
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-04
  • 修回日期:  2023-10-10
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回