留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于“深地-井下-地面”联动的煤矿矿井水处理利用模式初探

张春晖 赵桂峰 苏佩东 肖楠 张益臻 沈哲林

张春晖, 赵桂峰, 苏佩东, 肖楠, 张益臻, 沈哲林. 基于“深地-井下-地面”联动的煤矿矿井水处理利用模式初探[J]. 矿业科学学报, 2024, 9(1): 1-12. doi: 10.19606/j.cnki.jmst.2024.01.001
引用本文: 张春晖, 赵桂峰, 苏佩东, 肖楠, 张益臻, 沈哲林. 基于“深地-井下-地面”联动的煤矿矿井水处理利用模式初探[J]. 矿业科学学报, 2024, 9(1): 1-12. doi: 10.19606/j.cnki.jmst.2024.01.001
ZHANG Chunhui, ZHAO Guifeng, SU Peidong, XIAO Nan, ZHANG Yizhen, SHEN Zhelin. Treatment and utilization of coal mine water based on 'deep ground-underground-surface ground' linkage system[J]. Journal of Mining Science and Technology, 2024, 9(1): 1-12. doi: 10.19606/j.cnki.jmst.2024.01.001
Citation: ZHANG Chunhui, ZHAO Guifeng, SU Peidong, XIAO Nan, ZHANG Yizhen, SHEN Zhelin. Treatment and utilization of coal mine water based on "deep ground-underground-surface ground" linkage system[J]. Journal of Mining Science and Technology, 2024, 9(1): 1-12. doi: 10.19606/j.cnki.jmst.2024.01.001

基于“深地-井下-地面”联动的煤矿矿井水处理利用模式初探

doi: 10.19606/j.cnki.jmst.2024.01.001
基金项目: 

国家自然科学基金 52170096

2021年度鄂尔多斯科技重大专项 2021EEDSCXQDFZ006

2022年度鄂尔多斯科技重大专项 2022EEDSKJZDZX015

详细信息
    作者简介:

    张春晖(1973—),男,河北景县人,教授,博士生导师,主要从事废(污)水处理与资源化利用方面的研究工作。E-mail:truemanjung@163.com

  • 中图分类号: TD989

Treatment and utilization of coal mine water based on "deep ground-underground-surface ground" linkage system

  • 摘要: 煤矿矿井水的高效低耗处理有助于推动煤炭资源的安全、高效开采。现有矿井水井下处理工艺选择受限、处理量小,地面处理占地面积大、运行成本高,矿井水处理后外排至地表又会产生高额的排水费。本文在总结分析煤矿矿井水处理技术现状基础上,提出了“深地-井下-地面”联动的煤矿矿井水处理利用模式:对矿井涌水通过“井下-地面”协同的方式进行高效低耗处理,处理后的矿井水部分用于矿区生产和矿区居民生活,其余部分则进行深地回灌或外排。首先介绍了该模式的基本原理;然后从水质、水量、水文、地质、地下建筑结构和回灌工程可行性对矿井水回灌工程的适用性进行评估和分析;最后介绍了不同水质矿井水处理技术和“井下-地面”协同处理技术体系,尤其针对回灌含水层选择、回灌施工作业、回灌试验、回灌水质模拟、回灌安全性分析等进行总结。
  • 图  1  “两维一体化”煤矿矿井水分级处理与高效循环利用技术体系流程[11]

    Figure  1.  "Two-dimensional integration" graded treatment and efficient recycling of coal mine water [11]

    图  2  基于“深地-井下-地面”联动的矿井水处理利用体系

    Figure  2.  "Deep ground-underground-surface ground" linkage system for mine water treatment and utilization

    图  3  基于“深地-井下-地面”联动的矿井水处理与利用概念模型示意图

    Figure  3.  Conceptual model of "deep ground-underground-surface ground" linkage system for mine water treatment and utilization

    图  4  矿井水井上-井下联合高效低耗处理技术体系[45]

    Figure  4.  Surface-underground mine water treatment system with high-efficiency and low energy consumption [45]

    图  5  梧桐庄矿1号回灌井结构示意图

    Figure  5.  No.1 reinjection well structure in Wutongzhuang mine

  • [1] 中国煤炭工业协会. 2022煤炭行业发展年度报告[EB/OL]. (2022-03-28)[2023-08-01]. http://www.coalchina.org.cn/index.php?m=content&c=index&a=show&catid=9&id=146684.
    [2] 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(1): 304-316.

    SUN Yajun, CHEN Ge, XU Zhimin, et al. Research progress of water environment, treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society, 2020, 45(1): 304-316.
    [3] 山西人大专项报告. 关于全市煤炭石油天然气开发中水资源利用和保护工作的调研报告[EB/OL]. (2016-06-16)[2023-03-26]. http://ylrdw.gov.cn/item.php?id=1729.
    [4] 李福勤, 李硕, 何绪文, 等. 煤矿矿井水处理工程存在的问题及对策[J]. 中国给水排水, 2012, 28(2): 18-20.

    LI Fuqin, LI Shuo, HE Xuwen, et al. Problems and solutions for mine water treatment works[J]. China Water & Wastewater, 2012, 28(2): 18-20.
    [5] 国家发展和改革委员会, 水利部, 发展改革委. 水利部关于印发《国家节水行动方案》的通知[EB/OL]. (2019-04-15)[2023-03-26]. http://www.gov.cn/gongbao/content/2019/content_5419221.htm.
    [6] 武强, 王志强, 郭周克, 等. 矿井水控制、处理、利用、回灌与生态环保五位一体优化结合研究[J]. 中国煤炭, 2010, 36(2): 109-112.

    WU Qiang, WANG Zhiqiang, GUO Zhouke, et al. A research on an optimized five-in-one combination of mine water control, treatment, utilization, back-filling and environment friendly treatment[J]. China Coal, 2010, 36(2): 109-112.
    [7] 何绪文, 杨静, 邵立南, 等. 我国矿井水资源化利用存在的问题与解决对策[J]. 煤炭学报, 2008, 33(1): 63-66.

    HE Xuwen, YANG Jing, SHAO Linan, et al. Problem and countermeasure of mine water resource regeneration in China[J]. Journal of China Coal Society, 2008, 33(1): 63-66.
    [8] 王红瑞, 洪思扬, 秦道清. 干旱与水资源短缺相关问题探讨[J]. 水资源保护, 2017, 33(5): 1-4, 24.

    WANG Hongrui, HONG Siyang, QIN Daoqing. Discussion on related issues of drought and water shortage[J]. Water Resources Protection, 2017, 33(5): 1-4, 24.
    [9] 顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015, 40(2): 239-246.

    GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society, 2015, 40(2): 239-246.
    [10] 李志明. 高矿化度矿井水回灌技术分析[J]. 中国煤炭, 2010, 36(11): 111-113.

    LI Zhiming. Analysis of the super mineralized mine-water back-filling technology[J]. China Coal, 2010, 36(11): 111-113.
    [11] 张春晖, 鲁文静, 唐佳伟, 等. "两维一体化"煤矿矿井水分级处理与高效循环利用技术[J]. 能源科技, 2021, 19(1): 17-22.

    ZHANG Chunhui, LU Wenjing, TANG Jiawei, et al. "two-dimensional integrated" coal mine water treatment by classification and efficient recycling technology[J]. Energy Science and Technology, 2021, 19(1): 17-22.
    [12] 邵轩, 张万鹏. 关闭煤矿老空水危害与防治对策[J]. 能源与环保, 2021, 43(8): 37-39, 44.

    SHAO Xuan, ZHANG Wanpeng. Hazards and prevention countermeasures of old goaf water in closed coal mines[J]. China Energy and Environmental Protection, 2021, 43(8): 37-39, 44.
    [13] 杨斌. 煤矿老空水水害防治关键技术研究[J]. 能源与环保, 2019, 41(4): 24-28.

    YANG Bin. Research on key technologies of water damage prevention and control in coal mine goaf[J]. China Energy and Environmental Protection, 2019, 41(4): 24-28.
    [14] 邓景衡. 酸性矿山废水处理技术研究进展[J]. 广州化工, 2015, 43(15): 12-13, 40.

    DENG Jingheng. Research progress of treatment techniques for acid mine drainage[J]. Guangzhou Chemical Industry, 2015, 43(15): 12-13, 40.
    [15] 郑强, 张永波, 吴艾静, 等. 马兰黄土吸附酸性老空水中典型污染物的实验研究[J]. 科学技术与工程, 2020, 20(3): 1277-1282.

    ZHENG Qiang, ZHANG Yongbo, WU Aijing, et al. Experimental study on the adsorption of acid mine drainage using Malan loess[J]. Science Technology and Engineering, 2020, 20(3): 1277-1282.
    [16] 郭强. 煤矿矿井水井下处理及废水零排放技术进展[J]. 洁净煤技术, 2018, 24(1): 33-37, 56.

    GUO Qiang. Technical progress of underground mine water treatment and zero discharge of waste water[J]. Clean Coal Technology, 2018, 24(1): 33-37, 56.
    [17] 孙亚军, 张梦飞, 高尚, 等. 典型高强度开采矿区保水采煤关键技术与实践[J]. 煤炭学报, 2017, 42(1): 56-65.

    SUN Yajun, ZHANG Mengfei, GAO Shang, et al. Water-preserved mining technology and practice in typical high intensity mining area of China[J]. Journal of China Coal Society, 2017, 42(1): 56-65.
    [18] 秦光明. 煤矿水文地质勘探现状及新的勘探技术分析[J]. 环境与发展, 2020, 32(12): 245-246.

    QIN Guangming. Current situation of hydrogeological exploration in coal mine and analysis of new exploration technology[J]. Environment and Development, 2020, 32(12): 245-246.
    [19] 曾繁富, 左明星, 宋洪柱, 等. 乌审旗一带刘家沟组作为高矿化度矿井水回灌目的层的可行性分析[J]. 煤炭与化工, 2020, 43(11): 59-62, 66.

    ZENG Fanfu, ZUO Mingxing, SONG Hongzhu, et al. Feasibility analysis of the Liujiagou Group in the Wushen Banner area as a target layer for water recharge in highly mineralized mines[J]. Coal and Chemical Industry, 2020, 43(11): 59-62, 66.
    [20] 孙亚军, 徐智敏, 李鑫, 等. 我国煤矿区矿井水污染问题及防控技术体系构建[J]. 煤田地质与勘探, 2021, 49(5): 1-16.

    SUN Yajun, XU Zhimin, LI Xin, et al. Mine water drainage pollution in China's coal mining areas and the construction of prevention and control technical system[J]. Coal Geology & Exploration, 2021, 49(5): 1-16.
    [21] 韩振文. 煤矿生产安全管理研究[J]. 内蒙古煤炭经济, 2022(3): 106-108.

    HAN Zhenwen. Study on safety management of coal mine production[J]. Inner Mongolia Coal Economy, 2022(3): 106-108.
    [22] 赵峰华, 郭元, 孙红福, 等. 辛置煤矿复杂灰岩含水层的模糊综合判别法[J]. 矿业科学学报, 2019, 4(3): 195-203. http://kykxxb.cumtb.edu.cn/article/id/214

    ZHAO Fenghua, GUO Yuan, SUN Hongfu, et al. Fuzzy comprehensive discriminant method for complex limestone aquifers in Xinzhi coal mine[J]. Journal of Mining Science and Technology, 2019, 4(3): 195-203. http://kykxxb.cumtb.edu.cn/article/id/214
    [23] 何绪文, 李福勤. 煤矿矿井水处理新技术及发展趋势[J]. 煤炭科学技术, 2010, 38(11): 17-22, 52.

    HE Xuwen, LI Fuqin. New technology and development tendency of mine water treatment[J]. Coal Science and Technology, 2010, 38(11): 17-22, 52.
    [24] 麻博, 林智炜, 孙超, 等. 复合絮凝剂的制备及其在高浊矿井水中的应用[J]. 洁净煤技术, 2022, 28(2): 186-194.

    MA Bo, LIN Zhiwei, SUN Chao, et al. Preparation of composite flocculant and its application in high turbidity mine water[J]. Clean Coal Technology, 2022, 28(2): 186-194.
    [25] 何绪文, 王绍州, 张学伟, 等. 煤矿矿井水资源化利用技术创新[J]. 煤炭科学技术, 2023, 51(1): 523-530.

    HE Xuwen, WANG Shaozhou, ZHANG Xuewei, et al. Coal mine drainage resources utilization technology innovation[J]. Coal Science and Technology, 2023, 51(1): 523-530.
    [26] 王春荣, 胡建龙, 何绪文, 等. 改性火山岩处理高铁锰矿井水机理分析[J]. 煤炭科学技术, 2013, 41(1): 121-124.

    WANG Chunrong, HU Jianlong, HE Xuwen, et al. Mechanism analysis on high iron and manganese content mine water treatment with modified volcanic rocks[J]. Coal Science and Technology, 2013, 41(1): 121-124.
    [27] 张春晖, 王文倩, 师学璐, 等. MnO2/TiO2改性沸石去除矿井水中Fe2+和Mn2+的试验研究[J]. 环境科学研究, 2022, 35(4): 1007-1015.

    ZHANG Chunhui, WANG Wenqian, SHI Xuelu, et al. Removal of Fe2+ and Mn2+ from mine water by MnO2/TiO2 modified zeolites[J]. Research of Environmental Sciences, 2022, 35(4): 1007-1015.
    [28] 蒋斌斌, 高昊, 杜坤, 等. 煤基复合絮凝剂对高浊度高矿化度矿井水的絮凝效果研究[J]. 矿业科学学报, 2020, 5(6): 682-687. doi: 10.19606/j.cnki.jmst.2020.06.011

    JIANG Binbin, GAP Hao, DU Kun, et al. Research on flocculation effect of fly ash composite on high turbidity and high salinity mine water[J]. Journal of Mining Science and Technology, 2020, 5(6): 682-687. doi: 10.19606/j.cnki.jmst.2020.06.011
    [29] 郭强, 宋喜东, 虎晓龙, 等. 高矿化度矿井水井下深度处理与浓盐水封存技术研究[J]. 煤炭工程, 2020, 52(12): 16-19.

    GUO Qiang, SONG Xidong, HU Xiaolong, et al. Treatment of high salinity mine water and storage of concentrated brine[J]. Coal Engineering, 2020, 52(12): 16-19.
    [30] 顾大钊. "能源金三角"地区煤炭开采水资源保护与利用工程技术[J]. 煤炭工程, 2014, 46(10): 34-37.

    GU Dazhao. Water resource protection and utilization engineering technology of coal mining in "energy golden triangle"Region[J]. Coal Engineering, 2014, 46(10): 34-37.
    [31] 章丽萍, 安逸云, 吴二勇, 等. 响应曲面法优化含氟矿井水处理及除氟机理研究[J]. 矿业科学学报, 2022, 7(6): 782-792. doi: 10.19606/j.cnki.jmst.2022.06.015

    ZHANG Liping, AN Yiyun, WU Eryong, et al. Optimization of fluorine mine water treatment and fluorine removal mechanism using response surface methodology[J]. Journal of Mining Science and Technology, 2022, 7(6): 782-792. doi: 10.19606/j.cnki.jmst.2022.06.015
    [32] 孙桂容. Ce-Mn复合金属氧化物改性沸石的制备及水体除氟性能研究[D]. 北京: 中国矿业大学(北京), 2022.
    [33] 章丽萍, 吴二勇, 姚瑞涵, 等. 高效除氟药剂对神东矿区含氟矿井水的处理研究[J]. 干旱区资源与环境, 2022, 36(2): 84-90.

    ZHANG Liping, WU Eryong, YAO Ruihan, et al. Treatment of fluoride-containing mine water from Shendong coalmine with high efficiency defluoridation agent[J]. Journal of Arid Land Resources and Environment, 2022, 36(2): 84-90.
    [34] 郑彭生, 杨建超, 郭中权, 等. 酸性矿井水中和—絮凝沉淀除铁试验研究[J]. 能源环境保护, 2019, 33(5): 36-38.

    ZHENG Pengsheng, YANG Jianchao, GUO Zhongquan, et al. Experimental study on iron removal of acidic mine water in neutralization-flocculation precipitation[J]. Energy Environmental Protection, 2019, 33(5): 36-38.
    [35] 徐加兴, 沈贤德, 邱县金, 等. 矿山酸性废水处理高密度泥浆法及辅助沉降协同试验研究[J]. 矿冶, 2019, 28(6): 88-91.

    XU Jiaxing, SHEN Xiande, QIU Xianjin, et al. Synergistic study on high density sludge process and auxiliary settlement method in treatment of acid mine drainage[J]. Mining and Metallurgy, 2019, 28(6): 88-91.
    [36] 周如禄, 高亮, 郭中权, 等. 煤矿矿井水井下直接处理及循环利用[J]. 中国给水排水, 2013, 29(4): 71-74, 79.

    ZHOU Rulu, GAO Liang, GUO Zhongquan, et al. Underground direct treatment and recycle of coal mine water[J]. China Water & Wastewater, 2013, 29(4): 71-74, 79.
    [37] 陈苏社. 煤矿地下水库建设需注意的关键技术问题[J]. 陕西煤炭, 2018, 37(6): 48-52, 65.

    CHEN Sushe. Study on the key technologies of underground reservoir construction in coal mines[J]. Shaanxi Coal, 2018, 37(6): 48-52, 65.
    [38] 谢和平, 高明忠, 刘见中, 等. 煤矿地下空间容量估算及开发利用研究[J]. 煤炭学报, 2018, 43(6): 1487-1503.

    XIE Heping, GAO Mingzhong, LIU Jianzhong, et al. Research on exploitation and volume estimation of underground space in coal mines[J]. Journal of China Coal Society, 2018, 43(6): 1487-1503.
    [39] 王宪勇. 磁窑沟煤矿采空区储水自然净化利用技术应用[J]. 煤炭与化工, 2021, 44(S1): 40-43.

    WANG Xianyong. Application of natural purification and utilization technology of water store in the mining aera of Ciyaogou mine[J]. Coal and Chemical Industry, 2021, 44(S1): 40-43.
    [40] 顾大钊, 颜永国, 张勇, 等. 煤矿地下水库煤柱动力响应与稳定性分析[J]. 煤炭学报, 2016, 41(7): 1589-1597.

    GU Dazhao, YAN Yongguo, ZHANG Yong, et al. Experimental study and numerical simulation for dynamic response of coal Pillars in coal mine underground reservoir[J]. Journal of China Coal Society, 2016, 41(7): 1589-1597.
    [41] 张世明, 杨茂林. 寸草塔二矿采空区防水密闭墙可靠性分析[J]. 能源科技, 2020, 18(7): 72-77.

    ZHANG Shiming, YANG Maolin. Analysis of reliability of goaf watertight wall at cuncaota coal mine Ⅱ[J]. Energy Science and Technology, 2020, 18(7): 72-77.
    [42] 程志伟, 王碧清, 田江鱼. 高悬浮物矿井水处理技术研究与应用[J]. 煤炭科学技术, 2020, 48(S1): 278-282.

    CHENG Zhiwei, WANG Biqing, TIAN Jiangyu. Research and application of high suspended solids mine water treatment technology[J]. Coal Science and Technology, 2020, 48(S1): 278-282.
    [43] 狄军贞, 江富, 马龙, 等. 矿井水井下原位处理的PRB活性材料组合修复能力研究[J]. 煤炭学报, 2013, 38(10): 1837-1841.

    DI Junzhen, JIANG Fu, MA Long, et al. Repairability of PRB active material combination on in situ mine water[J]. Journal of China Coal Society, 2013, 38(10): 1837-1841.
    [44] 赵俊昌. 高悬浮物矿井水治理及资源化利用技术研究[J]. 中国煤炭地质, 2022, 34(2): 48-50, 80.

    ZHAO Junchang. High suspended substance content mine water governance and reutilization technological research[J]. Coal Geology of China, 2022, 34(2): 48-50, 80.
    [45] 顾大钊, 李庭, 李井峰, 等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术, 2021, 49(1): 11-18.

    GU Dazhao, LI Ting, LI Jingfeng, et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology, 2021, 49(1): 11-18.
    [46] 赵彩凤, 杨建. 高矿化度矿井水地下回灌对毛乌素沙漠地下水水质的影响[J]. 煤矿安全, 2018, 49(3): 29-32.

    ZHAO Caifeng, YANG Jian. Influence of groundwater recharge with high salinity mine water on groundwater quality in mu us desert[J]. Safety in Coal Mines, 2018, 49(3): 29-32.
    [47] 刘毅涛, 王国文, 龙陆军, 等. 矿井水深部回灌运移机理及扩散规律研究[J]. 中国煤炭地质, 2021, 33(12): 36-41.

    LIU Yitao, WANG Guowen, LONG Lujun, et al. Study on migration mechanism and diffusion pattern in mine water deep infusion[J]. Coal Geology of China, 2021, 33(12): 36-41.
    [48] 郭再峰. 煤矿矿井水净化处理与回灌治理技术[J]. 探矿工程: 岩土钻掘工程, 2011, 38(12): 79-82.

    GUO Zaifeng. Water decontamination and recharge treatment in coalmine[J]. Exploration Engineering: Rock & Soil Drilling and Tunneling, 2011, 38(12): 79-82.
    [49] 李世峰, 高文婷, 牛永强, 等. 矿井废水回灌工程试验研究[J]. 河北工程大学学报: 自然科学版, 2012, 29(4): 66-70.

    LI Shifeng, GAO Wenting, NIU Yongqiang, et al. The experimental study on recharge engineering of mine wastewater[J]. Journal of Hebei University of Engineering: Natural Science Edition, 2012, 29(4): 66-70.
    [50] 李旺林. 反滤回灌井的结构设计理论和方法[J]. 地下水, 2009, 31(1): 126-129.

    LI Wanglin. Structure design theory and method of recharge well with filter layer[J]. Ground Water, 2009, 31(1): 126-129.
    [51] 张猛, 成徐州, 赵璇. 采用组合式强化井灌的人工地下水回灌[J]. 清华大学学报: 自然科学版, 2009, 49(9): 1531-1533.

    ZHANG Meng, CHENG Xuzhou, ZHAO Xuan. Artificial groundwater recharge with reclaimed water using enhanced direct injection well recharge system[J]. Journal of Tsinghua University: Science and Technology, 2009, 49(9): 1531-1533.
    [52] 郑小燕, 张志林. 浅谈城市地下空间开发中的地下水控制问题[J]. 城市地质, 2018, 13(1): 30-36.

    ZHENG Xiaoyan, ZHANG Zhilin. Preliminary study on groundwater control in the development of urban underground space[J]. Urban Geology, 2018, 13(1): 30-36.
    [53] 张凯, 高举, 蒋斌斌, 等. 煤矿地下水库水-岩相互作用机理实验研究[J]. 煤炭学报, 2019, 44(12): 3760-3772.

    ZHANG Kai, GAO Ju, JIANG Binbin, et al. Experimental study on the mechanism of water-rock interaction in the coal mine underground reservoir[J]. Journal of China Coal Society, 2019, 44(12): 3760-3772.
    [54] 房满义, 李雪妍, 张根, 等. 煤矿地下水库水岩作用机理研究: 以大柳塔煤矿为例[J]. 煤炭科学技术, 2022, 50(11): 236-242.

    FANG Manyi, LI Xueyan, ZHANG Gen, et al. Research on water-rock interaction mechanism in coal mine underground reservoir—taking Daliuta Coal Mine as an example[J]. Coal Science and Technology, 2022, 50(11): 236-242.
    [55] 刘少玉, 郜洪强, 陈立. 华北平原典型地区地下水回灌关键技术与工程示范[M]. 北京: 地质出版社, 2017: 377-378.
    [56] 张文泉, 张广鹏, 李伟, 等. 煤层底板突水危险性的Fisher判别分析模型[J]. 煤炭学报, 2013, 38(10): 1831-1836.

    ZHANG Wenquan, ZHANG Guangpeng, LI Wei, et al. A model of Fisher's discriminant analysis for evaluating water inrush risk from coal seam floor[J]. Journal of China Coal Society, 2013, 38(10): 1831-1836.
  • 加载中
图(5)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  109
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-07-20
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回